BRACONINE WASPS OF AUSTRALIA

DONALD L. J. QUICKE AND SIMON N. INGRAM

Quicke, D.L.J. \& Ingram, S. N. 199306 30: Braconine wasps of Australia. Memoirs of the Queensland Museum 33(1): 299-336. Brisbane. ISSN 0079-8835.

Abstract

An illustrated key to the 45 genera of Braconinae known from Australia is provided. Pycnobraconoides gen.nov. (type species: Ichneumon mutator Fabrieius) is deseribed and illustrated. Thirteen new species are described and illustrated: Acrocerilia tricolor sp.nov. (Queensland); Africadesha tobiasi sp.nov. (Queensland); Atanycolus australiensis sp.nov. (Queensland); Calcaribracon willani sp.nov. (Queensland); Furcadesha walteri sp.nov. (Queensland); Myosoma rufescens sp.nov. (Queensland); Pedinopleura australiensis sp.nov. (Queensland); Simplicibracon nigritarsus sp.nov. (Queensland); Testudobracon australicolorus sp.nov. (Queensland); Testudobracon tatyanae sp.nov. (Queensland); Testudobracon unicolorus sp.nov. (Qucensland); Trigastrotheca tricolor sp.nov. (Queensland) and Virgulibracon endoxylaphagus sp.nov. (Queensland). Poecilobracon Cameron is treated as junior synonym of Callibracon Ashmead. Bracon froggafti Cameron is transferred to Pycnobraconoides gen.nov. Nine genera are recorded from Australia for the first time: Acrocerilia van Achterberg; Africadesha Quicke, Atanycolus Foerster, Furcadesha Quieke, Gelasinibracon Quicke, Paranesaulax Quicke, Rostraulax Quicke, Trigastrotheca Cameron and Vipiomorpha Tobias. Calcaribracon diores (Cameron) is recorded from Australia for the first time. Notes are provided on the distributions and biologies (when known) of all the genera. \square Hymenoptera, Braconidae, Braconinae, wasp, parasite, Australia, key, new genera. new species, synonymy.

Donald LJ. Quicke \& Simon N. Ingram, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN. United Kinglom (address correspondence to DLJQ); 13 July, 1992.

The Braconinae is a huge, cosmopolitan subfamily of parasitie wasps with nearly 5000 deseribed speeies (Shenefelt, 1978) distributed among more than 200 genera world wide. The vast majority of speeies are eetoparasitoids prineipally on eoleopterous and lepidopterous hosts though a few attaek Diptera, Hymenoptera-Symphyta and possibly Homoptera and one group, the Aspidobraeonina, are endoparasitie on butterfly pupae.

Only a minority of extant speeies have been deseribed and there are also undoubtedly numerous new genera awaiting diseovery, the Australian fauna of braconine wasps being partieularly poorly known. The last generie key dealing speeifieally with Australia is that of Szépligeti (1906) whieh ineluded 10 genera. More recently, Parrott (1953) eatalogued the Australian Braeoninae listing 12 genera eompared with the 45 now known to oceur there. More Australian species ean be identified to genus with the key to the Old World genera provided by Quicke (1987b). However, sinee that time, several new Australian genera have been deseribed (Quieke, 1988e, 1989d; Quieke \& Tobias, 1990) and it is therefore thought that the presentation of an illustrated key to the Australian genera would be both timely and
would eneourage mueh needed investigation of Australian braconine wasp biology.

TERMINOLOGY AND COLLECTIONS

Terminology follows that of van Aehterberg (1979, 1988). Wing veins are measured from the centres of their junctions (except for forewing vein r and where otherwise stated), length of head is measured perpendieular to the faee (re: eouplet 34), length of femur exeludes troehantellus and ovipositor length refers to that part whieh would normally projeet beyond the apex of the metasoma when directed posteriorly as in most set speeimens.
Abbreviations for muscums are: Ameriean Entomologieal Institute, Gainesville (AEIG); Australian Museum, Sydney (AMSA); Australian National Inseet Collection, Canberra (ANIC); Hungarian Natural History Museum, Budapest (HNHM); Natural History Museum, London (BMNH); Queensland Department of Primary Industrics, Indooroopilly, Brisbanc (QDPI); Queensland Museum, South Brisbane (QMBA); Quieke Colleetion, Sheffield (QC).

KEY TO THE GENERA AND SUBGENERA OF AUSTRALIAN BRACONINAE (우웅 ONLY)

The following key is arranged so as to obtain reasonably quick identification of Australian genera and thus the first key character is chosen so as to divide the known genera into two, roughly equal-sized groups. By reference to Figures 2735 the shape of the scapus of the great majority of specimens encountered should be unambiguously assignable to one category or the other. The few genera with species showing variation or intermediate conditions (notably in the Aphrastobraconina, viz Cedilla, Curriea, Ligulibracon. Megalommum and Undabracon and especially Eucurriea) are allowed for by a loop. To assist further with use of couplet 1 , and to help allow for specimens in which both antennae are missing, a list of unique characters for genera and groups is provided in Table 1.

1. Scapus shorter ventrally than dorsally in lateral aspect when directed anteriorly, usually small (Figs 27, 28, 31, 47, 48, 75, 76, 81, 85), not emarginate medially (Fig. 47) and at most only weakly emarginate laterally (Figs 31, 47) (see Table L in case of uncertainty)

- Scapus at least as long or longer ventrally than dorsally in lateral aspect when direeted anteriorly, often cylindrical and large (Figs 32-35, 39, 44,80), ustally witt well-developed apico-medial and apico-lateral emarginations
. 32

2. Forewing vein CUla arising at the same tevel as $2-\mathrm{CU}$, vein CUlb much longer than $3 \mathrm{CU}-1$ if the latter is distinct (Fig. 12) (Adeshini)
.. 3

- Forewing vein Cula ansing well below the level of 2-CU, vein 3CU-1 at least as long as and usually much longer than ven CU1b (Figs 13, 15-19, 94-100)

3. Posterior margin of 5 th metasomal tergite strongly produced on either side of the midline (Figs 110 , 111) \qquad Furcadesha

- Posterior margin of 5 fh melasomal tergile not protuced sub-mediallyAfrioadesha

4. Firsi metasomal tergite fused to metasomal syntergite $2+3$, the junction between tergites 1 and 2 being represented by a crenulale sulcus (Figs 74, 121) (Aspidobraconina) \qquad

- First metasomal tergite movable joined to metasomal syntergite $2+3$, there being a normal arthrodial intersegmental membrane betweentergites 1 and 2 (Figs59-71)
... 6

5. Median area of metanotum wilh a complele mid-longitudinal carina; dorsal carinae of 1st metasomal
tergite running separately to posterior margin of tergite; base of hindwing with a glabrous area; median labe of mesoscutum with a pair of submedial, longitudinal grooves anteriorly; Gth tergite with relatively shallow peri-basal, transverse groove (Fig. 121)

Pedinopleura

- Median area of metanotum without a complete carina (Fig. 105); dorsal carinae of 1st metasomal tergite uniting mid-postcriorly well before posterior margin of tergite (fig. 74): base of hindwing more or less evenly setose; median lobe of mesoscutum without sub-medial longitudinal grooves anteriorly; Gth lergite with deep peri-basal, transverse groove (Fig. 115)

Hyboteles
6. Propodeum with a complete, lamelliform mid-longitudinal carina (see Fig. 105)

- Propodeum without a complete lamelliform midlongitudinal carina or with only a short one posteriorly .. 12

7. Posterior margin of 6 th metasomal tergite with at (usually) deep, narrow, semicircular, medial emargination (Figs 117, 118, 120) and (usually) tergites 3-5 distinctly roundly produced lateratly (Figs 116, 119); metasomal syntergite $2+3$ wider than long; ovipositor as long as or longer than the metasomi \qquad Testudobracon

- Posterior margin of fith metasomal tergite not narrowly emarginate medially nor roundly produced laterally (Fig. 113); metasomal syntergite $2+3$ longer than wide (Figs 71, 73); ovipositor usually shorter than half the metasoma \qquad 8. Posterior margin of 6 th metasomal tergite with a pair of submedian emarginations leaving a sharp median prominence (Figs L12, 113) Trigastrotheca

Character	Slate	Go to key couplet
Scapus	petiolate, strongly or angularly narrowed at base with concave basal prafile (Fig 44)	40
Propodeum	with complete, mid- longrudinal (usually lamolliform) carina (Fig 105)	2
Forewing vein 3-CU1	absent ur much shorter than vein CU1b (Figs 12, 89)	3
Forewing veins CU1b	much wider than posterior pani of vein 3CU1 (Figs 21, 22, 94)	32
Claws	bifurcate (Figs 57. 58)	42
Basal lobe of claw	poiuted or with small accessory tooth (Figs 52-54)	2
1st merasomal tergite	fused immovably to 2nd (Fig 74)	5

TABLE I, Characters characterizing and unique to genera or groups of genera and key couplet to proceed from to complete identification

- Posterior margin of 6th metasomal tergile without submedial emarginations nor with a median prominence
.9

9. Base of hindwing with a large glabrous area distal to, and approximately the same size as, the subbasal cell; scutellum with a well-developed pit medio-anteriorly; forewing vein $r-m$ with only a single posterior bulla; forewing $2 n d$ submarginal cell virtually parallel-sided, veins 3-SR and 2-M not noticeably converging distallyAcrocerilia

- Base of hodwing more or less evenly densely setose with at most only a small glabrous area around vein 2-1A; scutellum without a medio-anterior pit: forewing vein $\mathrm{r}-\mathrm{m}$ variable but often with a distinet bulla and assocrated flexion line anteriorly as well as posteriorly; forewing 2nd submarginal cell narrowing distally 10

10. Hindwing vein 2-SC+R transverse (Fig. 102); ovipositor (pan extending beyond apex of metasoma) longer than the median length of the 2nd metasomal tergite; transverse median clypeal carina strongly protruding (Fig. 76).

Simplicibracon

- Hindwing vein 2-SC+R longitudinal (Fig. 101); ovipositor (part extending beyond apex of metasoma) shorter than medial length of 2nd metasomal tergite; transverse median clypeal carina less strongly protruding11

11. Precoxal suture represented by a decp. smooth. medial, circular pit; 2nd metasomal suture interrupted mediafly at least by a strong ridge, usually by a wider area (Figs 71, 73); median area of metanotum with a complete mid-longitudinal carina

Gelasinibracon

- Precoxal suture represented by an elongate distinctly sculptured impression; 2nd metasomal suture not intertupted medially; median area of metanotum bubous, without a complete mudlongitudinal carina

Esengoides
12. Basal lobes of claws at least angularly narrowing before the claw (Figs 53, 54), sometimes produced into a distinct tooth-like process (Fig. 52)

- Basal lobe of claws smoothly curved (Figs 55-57)
.20

13. Hindwing with at least a pigmented line representing vein 3-CU (Fig. 14; separated from remainder of venation); basal lobe of claws produced into a tooth-like process (Fig. 52) 14

- Hindwing without vein 3-CU (Figs 15-19); basal lobe of claws angularly narrowed, but not toothed (Figs 53, 54)
.15

14. Labio-maxillary complex elongate, hindwing vein 2-SC+Rstrongly transverse (Fig. 14)

Calcaribracon (Calcaribraconi)

- Labio-maxillary complex normal; hindwing vein $2-S C+R$ interstitual or longitudinal (see Fig. 101)

Calcaribracon (Arostrobracon)
15. Shortest distance between 1 st discal cell and 2 nd subiharginal cell of forewing at least 0.85 times shortest distance between 1st submarginal and 3rd submarginal cell (Eig. 15)Tropabracon

- Shortest distance between 1st discal cell and 2nd submarginal cell not more than 0.7 times shortest distance betwcen Ist and 3rd submarginal cells (Figs 16, 17, 87, 89)

16
16. Marginal cell of forewing short, vein SR1 reaching wing margin less than 0.65 times the distance between the apex of the pterostigma and the wing tip-(Fig. 16); propodeum largely sculptured

Vipiomorphia

- Marginal cell of forewing longer, vein SR1 feaching wing margin more than 0.8 times the distance betwecn the apex of the pterostigma and the wingtip (Figs 17-19); propodeum ofien smooth .17

17. First metasomal lergite very siender, more than 3.0 times longer than maximally wide (Fig. 70); forewing vein $1-\mathrm{SR}+\mathrm{M}$ straight or virtually so; metasoma completely smingth and shinyMyosomu

- First metasomal tergite less than 2.5 times longer than maximally wide (see Figs 65-67); forewing vein I-SR+M straight or curved; metasoma variably sculptured

18
18. Forewing vein $1-S R+M$ strongly ourved posteriorly after arising from vein l-SR (Fig, 17; see also Fig. 91), median flagellomeres shorter than widc; metasoma completely smooth and shin \qquad Mollibracon

- Forewing vein $1-\mathrm{SR}+\mathrm{M}$ straight or weakly cutved (see Figs 12, 13) or if strongly eurved (some Bracon spe.) then the median fligellomeres are distinerly longer than wide; metasoma variably sculptured

19
19. Forewing vein 3-SR more than I. 6 times longer than vein r, usuatly more than 1.9 times longet (see Figs 87, 88); forewing vein r more or less straight (see Fig. 88) \qquad Bracon (part)

- Forewing vein 3-SR less than 1.5 times longer than vein r, usually less than 1.2 times (Fig. 86); forewing vein r usually rather sinuous ($\mathrm{Fig}, 86$) Habrobracon

20. Middle of clypeus strongly produced to form a massive beak-like process (Figs 9, 10)

Psittacibracor

- Middle of clypens at most with a lamelliform carina (Fig. 75)
.21

21. Forewing vein CU1b much wider anteriorly than posterior part of vein 3-CU1 (Figs 21, 22,94), 1st subdiscal cell being more or less strongly ovoid
(or petiolate (Tigss 21. 22, 94) (Aphrastobraconina part)33

Forewing vein CUlb not or hardly wider than posterior part of vein 3-CU1 (Figs 95-100), Ist subdiscal cell not ovord or petuolate .22
22. Pedicelius large, highly peliolate, medially protruding and with a large but discrcle patch of specianized sensillae (Fig. 85); lore Whis with a longotudnal fow of thickened, peg-tike setae (7ig. 83)
. Serratohracora

- Pedicellus nomal-sized, not petiolate and without a parch of specialised sensiltue (if with sensillue then these not restncted torone side of pedicellus) (see Figs 27, 28, 31); fore tibia without a longitudinal row of thickened. preg-like sctur 23

23. With a strong spur arising from forewing ven 3-CU1 (tige 10(1); transverse median clypcal canna strongly protruding (Fige 75) lorewing vein $1-S R+M$ tuxderately curved. nut sharply angled (nee Figs 21, 26) Ploccibrucen

- Forewing vein 3-CU1 usually without a spur (sce Fige $96-99$) or 11 with a spur (e.g. some Virgulibrocon) then transverse median dypeal tarina not strongly produced (see Figs 4-48) and/or forewing vein 1. Sk+M sharply angled (Fige 9n. 92)

24
24. Ovipositor without a pre-apical dorsal noteh or nodus (Fige 128, 130, 131) 25

- Ovipositar with a distineal pre-apical dorsal noteh or nodus (ser Figs 133-138) 27

25. Ovipositor very short, thek and lauerally compressed (Fig. 131), the exserted parl shorter than metasomal syntergite $2+3$ a all metasomat tergites Jargely snowth and shilly \qquad Srigmuatubruroll

- Onpositor lunger and more slender (Jigs 128. 130), the exserted par longer than metasomed syntergite $2+3$; an least basal 2 metasomal tergites largely coursely wulptured (Fig. 67) \qquad

26. Farst metasomal tergite wilh a weil-developed Inidlongitudinal carina (Fig. 67): ovepositor graduaily and more or less evenly marru ing from base to apex (Fig. 128); cyes tirtually glabrous Hybogaster

- First melasomal tergite without a mid-longilndinal earina; ovipositor distinctly deepening pre-apically (Fig. 130): eyes usially weose. P'emohraranvides gen. nov.

27. Forcwing vein $1-S R+M$ shaply and strongly angicd posteriotly approsimately one third ol the dialance from its base (Figs 19,90, 92), often with a distinet spur arising lrom the angulation (fite. 92)
. 26

- Forcwing vein 1-SR +M straight or gently and more or lessevenly curved posteriorly (see figes 87.91, 94, 97), without is spur 30

28. First metasomal sergite with dorsal carina joining dorse-lateral carinat (Figs t6. 108), second melasumal tergite with a large well-developed mid. basal, postenorly matrowing, thangular aren (Fig. (6i); Trd metasomal tergite with well-developed antero-lateral, posteriorly diverging grooves; hindwing with a glabrous area distal to vein $1 \mathrm{r}-\mathrm{m}$
. Vomeribracon

- First metasomal iergite without dorsal or dorso-dileral carinae (Fig. 65); zecond melasomal tergite withoul a posseriorly narrowing, mid-basal triangular ared, sometimes with a pair of posteriorly diverging grouves (iag. 65): 3rd metasomal tergite withow, ne with only weak, satern-lateral grooves 29

29. Forewing vein rem with only urke bulla (posterior one); antero-lideral areas of 2nd metasomat tergile incmhranvus, unselertized .. Virgulibracom

- Forewang vein r-in whth two bullac: antern-laterall areas of 2nd metasomal tergite distinctly sclenutized Virgulibracomenda's

30. Forewngen-ia intersutial on virtailly su fsec figes 97-100). lower patt al clypeus sharply recessed into the hypurclypeal depreswion (see Figs 41-43, 47): oviposturs lese than 2.5 times lunger than forewng: forming vens: $C+S C+R$ and $1-S R$ formang an angle of move than 50°; base of hindwing usually evenly sedose. Brenton (pant)

- Forewing vein cu-a postfurcal, removed from vem 1-M by more than the with of a vein (Fige 20, 90). lower pars ol elypeus hardly recessed into hypoclypeal depressian, the hypuclypeal hair brushes bricowated more or less anteriorly (Fige 46): ovipusitor more than 3.5 limes longer than the lorewing. lorewing vains $\mathrm{C}+\mathrm{SC}+\mathrm{K}$ and $\mathrm{I}-\mathrm{SK}$ forming an angle of iess than 50 ": base of hindwing with a larese elabruus arca ... 31

31. I lindwing veln Ir-m fonger han vein SC+R I (Fig. 20) Eumobracon

- Ifindwing vein Ir-mi shonter than SC+R| (see Figes 101, 102). . Eturobracomates.

32. Forewing vein 3-CUI (nsually) marrowing posterioriy where it is narrower than the anlefiorly thick-
 cell with a medio-distal gliabrous aren (Figs 21, 22. 25): forewing vein 2-1A often markedly curved ar angled (Fig. 94) (Aphrastobraconmal) .. 33

- Forewing vell 3-CUl min markedly marrowed posteringly and not narrower than wein Culh (Figs 97.69); Ist subliscal coll nsuatly evenly sctose; lorewag vein 2-1A not strongly canved or ingled (bee Figs 47-4y)
. .34

33. Ovipositor formed ino 3 arch-like sectuons poste-
riorly (Fig. 125); base of hindwing evenly setose Undabracou

- Ovipositor at most formed into a single distal arch (Figs 123, 124, 126); base of hindwing with a large glabrous area.
.. 34

34. Ovipositor formed into a single distal arch (Figs 123,124); fore wing vein r -m with a single posterior bulla (Figs 21, 88) .. 35

- Ovipositor not formed into an arch distally (Fig. 126); forcwing vein $\mathrm{r}-\mathrm{m}$ with two bulli (see Fig. 20) or largely unsclerotized (Fig. 22)
.. 36

35. Ovipositor arch shallow, occupying approximately 0.3 of the exerted length of the ovipositor, base of arch indicated by angular expansion of the lower valves (Fig. 123); labio-maxillary complex somewhat elongate \qquad Ligulibracon

- Ovipositor arch deep, occupying less than 0.2 of the exerted length of the ovipositor, without angular basal projections of the lower valves (Fig. 124); labio-maxillary complex not elongate Cedilla

36. Width of head (across eyes)/length of head less than 1.48 ; face with coarsc foveate to rugose sculpturc (Fig. 41)
.. 37

- Width of head (across eyes)/length of head morc than 1.50; face shiny, smooth with scattered punctures (Fig. 43).
.............................. Eucurriea

37. Length of forewing vein 3-SR less than 1.65 times length of m-cu (Fig. 25); 1st tergite with weak dorso-lateral carinale. \qquad Vipiellus (part)

- Length of forewing vein 3-SR more than 1.7 times length of $\mathrm{m}-\mathrm{cu}$ (Fig. 22); 1st icrgite with or without dorso-lateral carinac
. .38

38. First metasomal tergite without dorso-lateral carinae (Fig. 61)
.Megalounuun

- First metasomal tergite with at least a trace of dorso-lateral carinac (see Figs 60, 66, 67)

Curriea
39. Scapus angularly narrowed basally (pctiolate), with a broad preapical concave ledge (Figs 34-36, 39. 80); only ever with one specialized bristle at apex of hindwing vein $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ (Figs 51, 103); pedicellus petiolate, strongly protruding medially with area of specialized sculpture (Figs 34, $35,37,38,80$)
.40

- Scapus not angularly narrowed basally, without such a broad preapical Icdge (Figs 29, 32); often with more than one especially thickened seta it apex of hind wing vein $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ (Figs 49,50); pedicellus more or less parallel-sided or distally narrowing, at most only slightly narrowed basally, not produced medially (Figs 29, 32, 33)

40. Face with a well-developed, transverse, protruding plate (Figs 39, 40, 44); apico-ventral setae of
penultimate tarsal article very long, more than 0.8 times ventral length of telotarsus 41

- Face without a plate-like projection (Fig. 77); apico-ventral setae of penultimate tarsal articles much shorter, not more than 0.5 times ventral length of telotarsus (see Figs 53, 55) ..Atanycohes

41. Face with a horn-like, apically truncate projection medially arising from the base of the plate-like projection (Fig. 40)Chaoilta (Blastomorpha)

- Facc att most with a mid-longitudinal, lamelliform carina above the plate-like projection (Fig. 39)
. Chaoilta (Chaoilta)

42. Claws bifurcate (Figs 57,58)Macrobracon

- Claws simple (Figs 55, 56) .43

43. Length of Ist subdiscal cell (parallel to vein 2-CU1) more than twice width of cell (perpendicular to vein 2-CU1) (Figs 23, 97); forewing vein r-m short, almost entirely unsclerotized, not tubular, without distinct bullae (Fig. 23); ovipositor with at least a weak pre-apical dorsal notch or nodus (Figs 135. 136) \qquad Eunesaulax

- 1st subdiscal cell less than 1.9 times longer than wide (Fig. 25) or if shorter then either forewing vein r-m longer, largely sclerotized and tubular, often with 1 or 2 distinct bullate (see Figs 20-22. 24-26), or ovipositor without a pre-apical dorsal notch or nodus (Figs 127-132) . 44

44. Forewing vein $1-S R+M$ distinctly curving towards the anterior wing margin alter arising from 1-SR (Fig. 93; see also Fig. 16); angle between veins $1-S R$ and $C+S C+R$ less than 50°; forewing vein r more than 0.69 times length of $\mathrm{m}-\mathrm{cu}$

Stenobraco...........
Forewing vein 1-SR+M usually distinctly curved posteriorly after arising from 1-SR (see Figs 19$26,90,97$) or if more or less straight then angle between veins $1-S R$ and $C+S C+R$ more than $55^{\circ} \mathrm{C}$ and/or vein r less than 0.65 times length of vein m-cu
.. 45
45. Ovipositor (part extending beyond apex of metasomia) more thin twice length of forewing 46

- Ovipositor (part extending beyond apex of metasoma) Jess than 1.4 times length of forewing 47

46. Apex of ovipositor smoothly expanded but without a pre-apical dorsal nodus or apicoventral serrations (Fig. 127); 2nd metasomal tergite smooth (Fig. 106); 3rel metasomal icrgite with a medially broken. transverse median groove or a pair of broader depressions (Fig. 106), otherwise smooth and shiny; labio-maxillary complex not elongate; posterior margin of propodeum simple, without curmae

Paranesaulax

- Apex of ovipositor with a distinet pre-apical dorsal nodus and ventral serrations; 2nd metasomal tergite coarsely sculptured (Fig. 104); 3rd metaso-

Abstract

mal tergite without a transverse median groove， largely sculptured；labio－maxillary complex moderately elongate；posterior margin of propodeum with one or more pairs of short，an－ teriorly diverging carinae ． \qquad Rostraulax 47．Ovipositor without a pre－apical dorsal notch or nodus（Fig．129，also see Fig．I28） －Ovipositor with a pre－apical dorsal notch or nodus （see Figs 133，134） 48．2nd metasomal tergile with a posteriorly narrow－ ing，mid－basal raised triangular area（see Fig．60）； forewing vein 3 －SR less than 1.9 times length of r－m（Fig．25）；posterior margins of metasomal tergites 3－5 membranous，without transverse sub－ posterior grooves \qquad Vipiellus（part） －2nd metasomal tergite without a posteriorly nar－ rowing，mid－basal triangular area（Fig．63）；fore－ wing vein 3－SR more than twice length of $\mathrm{r}-\mathrm{m}$ ； posterior margins of metasomal tergites 3－5 sclerotized and convex in lateral profile and with transverse subposterior groove． \qquad Iphiaulax 49．Metasoma short，robust and strongly sculptured （Fig．62）；3rd metasomal tergite more than 3.75 times wider than minimally long．Campyloneurus －Metasoma moderately elongate and largely smooth and shiny（Fig．64）；3rd metasomal tergite less than 2.25 times wider than minimally long

Callibracon

NOTES ON THE AUSTRALIAN GENERA
 INCLUDING DESCRIPTIONS OF A NEW GENUS AND NEW SPECIES

New records for genera occurring in Australia are indicated by an asterix．Full details of synon－ ymy are given in Shenefelt（1978），Quicke （1987b，1991a）and Quicke \＆van Achterberg （1990）．

＊Acrocerilia van Achtcrberg

Previously known only from the type species， A．pachynervis van Achterberg，from the Philip－ pines where it has been reared from the gracil－ lariid cocoa moth，Acrocercops cramerella Snellen．The biological details available for this species indicate that it emerges from the prepupa of its host and therefore van Achterberg（1989） cautiously suggested that it might in fact be an endoparasitoid though precise data are lacking．In terms of its relationships，Acrocerilia appears intermediate in structure between certain genera of the Plesiobracon group，in particular Psilolobus van Achterberg and Simplicibracon Quicke，and members of the Aspidobraconina
（see Hyboteles van Achterberg and Pedinopleura van Achterberg）．If an association with the Aspi－ dobraconina which are endoparasitoids of butter－ fly pupae is proven then this would add some support to the possibility that Acrocerilia might also be endoparasitic．

Key to specics of Acrocerilia

1．Top of head coriaceous；head black and white； metasoma dorsally black with a white margin： hindwing vein $1-\mathrm{M}$ narrowing distally． \qquad ．A．tricolor sp．nov．
－Top of head smooth；head brownish yellow；meta－ soma entirely brownish yellow；hindwing vein 1－M uniformly broad along its whole lengıh
．A．pachynervis van Achterberg

Acrocerilia tricolor sp．nov．

Material Examined

Holotype：of labelled：＇Australia NE Queensland Conway Range Nat．Park E from Proserpine＂and＇No． 226，22．11． 1981 leg．Hangay and Vojnits at light＇． Deposited in QMBA．
Paratype：of labelled：＇Australia NE Queensland Conway Range Nat．Park E from Proserpine＇and ＇18．11 1981 No． 177 leg．Hangay and Vojnits，at light＇． HNHM．

DESCRIPTION（ずす）

Length of body $4.4-5.0 \mathrm{~mm}$ ，of forewing 4．0－ 4.5 mm and of antenna $4.6-5.0 \mathrm{~mm}$ ．

Antennae with 43－44 flagellomeres．Terminal flagellomere acuminate．First flagellomere 1.07 and 1.15 times longer than the 2 nd and 3 rd respec－ tively，the latter being 1.5 times longer than wide． Height of clypeus：inter－tentorial distance：tento－ rio－ocular distance $=1.0: 3.8: 2.9$ ．Height of eye： shortest distance between cycs：width of head $=$ 1．0：1．29：2．37．Width of face：height of face $=$ 2．05：1．0．Face except for supra clypeal triangle densely，finely punctate，the punctures being ar－ ranged in transverse rows giving the face a striate appcarance．Eyes virtually glabrous．Frons，tem－ ples and occiput coriaceous，back of head becom－ ing fincly striate．Shortest distance between postcrior ocelli：transverse diameter of posterior ocellus：shortest distance between posterior occl－ lus and $\mathrm{cyc}=1.25: 1.0: 2.25$ ． Horizontal length of eye：horizontal length of hcad behind eye $=2.85$ ： 1.0.

Mesosoma 1.48 times longer than maximally high．Pronotum with crenulate groove laterally． Notauli modcrately well－developed on anterior

FIGS 1-6. 1. Stigmatobracon diversipennis Turner, ․ 2. Myosoma rufescens sp.nov., ô paratype. 3. Trigastrotheca tricolor sp.nov., \& paratype. 4. Virgulibraconoides sp., ㅇ. 5. Simplicibracon nigritarsus .sp.nov., \&f holotype. 6. Pycnobraconoides mutator (Fabricius) comb. nov., if and host cocoon with parasitoid's emergence hole.
half of mesoscutum, absent on posterior half. Scutellar sulcus with 5 transverse crenulae. Mesoscutum, scutellum, mesopleuron and mesosternum densely and evenily setose, punctulate. Precoxal suture indicated by a weak depression. Mesopleural suture punclate. Median area of metanotum with a short carina anteriorly: merging with a flat triangular plate posteriorly in one specimen. Propodeum with a complete midlongitudinal carina bordered by crenulae; posterior margin with numerous strong crenulations merging into rugose sculpture on the posterior half of the propodeum.
Forewing. Pterostigma 2.8 times longer than maximally wide, Lengths of veins SR1:3-SR: $\mathrm{r}=$ 5.0: 1.6: 1.0. Lengths of veins $2-\mathrm{SR}: 3-\mathrm{SR}: \mathrm{r}-\mathrm{m}=$ 136:136:1.0. Vein 2-M curved. Vein 1-M straight. Vein 1-SR forming an angle of approximately 80°. Veins cu-a more or less interstitial.
Hindwing, Vein $1 \mathrm{r}-\mathrm{m} 0.35$ times length of $\mathrm{SC}+\mathrm{RL}$. Apex of $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ with one especially thickened bristle. Vein 2-1A absent. Base of dis$\mathrm{cal}+$ subdiscal cell with a large glabrous area.
Lengths of fore femur: tibia: tarsus $=1.0$: 1.13 : 1.20. Lengths of hind femur: tibia: basitarsus = 2.0: 2.7: 1.0. Hind tibia slender, maximally deep at apex. Hind basitarsus 5 times long than deep.
Metasomal tergites 1-5 targely foveate-rugose, Second tergite 2.0 times wider than medially long. Second suture crenulate, moderately curved. Tergites $3-5$ with well-developed, anteroLateral areas. Posterior margin of 5th tergite slightly irregular.
Head ivory-white except for tips of mandibles, a triangular mark above the clypeus and the frons. temples. occiput and back of head down to level of base of eye which are black. Mesosoma brownish orange except for propodeum which is largely piccous. Fore and middle legs brownish orange, hind legs piceous to black. Metasomal tergites black except for the following which are ivory-white: the base and lateral margins (broadly) of the 1st tergite, the lateral margins of tergites I-5 (narrowly) and their antero-lateral triangular areas, and the posterior margin of the 5 th tergite. Wings uniformly very pale brown with dark brown pterostigma and venation.

* Arricadesha Quicke

Members of the Adeshini, these small wasps have wing Iengths less than 3mm. Africadesha is previously known from a single Afrotropical species, A. usherwoodi Quicke, though several other undescribed Alrotropical species have been seen
by the seninr author. Despite the strange disjunct distribution indicated by the discovery of the new Australian species, the two species differ only in relatively small characters and there is no reason to doubt the two as being anything other than congeneric. Nothing is known of the biology of any of the Adeshini. Further, given their small size, it is quite likely that members of other genera of this tribe will be found in Australia and the reader is referred to van Achterberg (1983a) and Quicke (1986b, 1988f).

Key to species of Africadestha

1. First metasomal tergite more than 1.5 times longer than posteriorly wide; third metasomal tergite with well-developed longituainally striate sculpture (Fig. 109). .A. robiasi sp.nov. - First metasomal tergite Jess than L.4 times longer than posteriorly wides third metasomal tergite without longitudinally striate sculpture \qquad
..A. usherwoodi Quicke

Africadesha tobiasi sp.nov.

(Figs 12, 109, 134)
Material Examined
Holotype: 오 labelled: ' 15 km NE Kuranda, Quecnsland, 1.V-I4.VI. 1985 MDPI FIT site 25, Storey \& Halfpapp', Deposited in QMBA.
Paratypes: 39 q. same data as holotype. QMBA. QDPI and BMNH.

Description (qQ)

Length of body 2.7 mm , of forewing 2.6 mm , of ovipositor (part exserted beyond apex of metasoma) 0.45 mm and of antenna 4.2 mm .
Antenna with 42 flagellomeres, considerably longer than the body. Terminal flagellomere pointed but not acuminate, 2.3 times longer than wide. Median flagellomeres 1.7 times longer than wide. First flagellomere 1.17 and 1.4 times longer than the 2 nd and 3 rd flagellomeres respectively, the latter being 2.25 times longer than wide Height of clypcus: inter-tentorial distance: tento-rio-ocular distance $=1.0: 2.8: 2.2$ 2. Face, frons and occiput coriaceous. Height of eye: shortest distance between eyes; width of head $=$ 1.0:1.375:2.5. Shortest distance between posterior ocelli: transverse diameter of posterior ocellus: shortest distance between posterior ocellus and eye $=1.5: 1.0: 3.5$.
Mesosema 1.5 times longer than high; largely coriaceous but mesostemum largely smooth and shiny. Precoxal suture very weakly, broadly im-
pressed. Mesopleural suture smooth. Propodeum with a complete mid-longitudinal carina.

Forewing. Lengths of veins SR1: 3-SR:r = 6.7:2.2:1.0. Lengths of veins 2-SR:3-SR:r-m = 1.7:2.0:1.0. Vein 2-SR+M moderately long; shortest distance between 1st subdiscal cell and 2nd submarginal cell: length of vein $\mathrm{m}-\mathrm{cu}=1.0$: 1.25. Veins cu-a and 3-CUl both more or less interstitial.

Lengths of fore femur: tibia: tarsus $=1.0: 1.2$: 1.53. Lengths of hind femur: tibia: basitarsus $=$ 1.47: 2.3: 1.0. Hind basitarsus 10 times long than deep.
First tergite 1.8 times longer than posteriorly wide; with rugose sculpture and with thin irregular mid-longitudinal carina. Second tergite 1.2 times wider posteriorly than medially long. Second and 3rd tergites with strong longitudinal

FIGS 7-11. 7. Eunesaulax terebratus Tobias, ․ 8. Eutrobraconoides longicaudis Quicke, 9. 9,10. Psittacibracon lacteolus Quicke, 9.11. Calcaribracon willani sp.nov., it holotype.
striations (Fig. 109) interspersed with punctate sculpture. Tergites 4 and 5 with fine rugulose to coriaceous sculpture. Fifts tergite without pos-lero- lateral emarginatuons. Ovipositor (exserted part) about as long as the 5th tergite; with a distinct pre-apical dorsal nodus, apico-ventrally virtually smooth (Fig. 134).
Uniformly pale brownish yellow, flagellum becoming piceous beyond middle, ovipositor sheaths black. Wings weakly infuscate with hrown venation.

Etymology

Named after our esteemed colleague Vladimir Tobias of the Russian Academy of Science, St Petershurg, who drew our attention to many interessing Australian Bracominae.

> *Atanycolus Foerster
> (Figs $77,80.82,84.103$)

Synonym.s. Coctobraw Thomson; Melanobrawen Ashmend; Aumycolidue Viereck
A widespread genus of medium-sized wasps. commonest ill the Nearctic and Palaearetic though with some closely related and more derived groups occurring in the nentropics te.g. Hemibraron Saéplagetit and Indo-Australian tegion (Nedinoschiza Cumeron). Nedinosrhiza. whech is probably unly a speciatized derivalive of Atanycolus, has not yet been recorded from Australe though it may oceur there: it can be distinguished from Abunycolus by the greatly colanged anterior tentonial pits. (Quicke, 1987 b)
Aranycolus tomentrasus Seépligeti, prewnowly placed in the Braconmae (sec Parrott. 1953), is in fact a member of the: Doryctinac (Quicke, 1984).

Atanycolus australiensis sp.now. (Figs 77. 30, 52,54)

Miterial Examinen

Holutrul: of with the following bited. Australiat $35-40 \mathrm{~km}$ NO Deniliquin. Tobras $12-13.12 .978 \%$. Deposted in ANIC.

Description(s)

Lenget of body 3.9 mim, of forewing 3.5 mm , of ovipusitor ipait oxsened beyond apex of motasomat) 3.3 mm and of imenna 3.0 mm .
Antanac (broken) with at least 29 Hagellomeres, all thagellomeres longer than wide, First flageflomere 125 and 15 times longer than 16 2nd and 3rd respectively, we latter being 1.75 times longer than apically wade. Height of cye:
shorlest distance between eyes: width of head $=$ 1.1:1.0:2.1. Face shiny, weakly at and with many deep punctures at the hases of the silvery setac. Eyes sparsely setose; emargnate opposite antennal sockets. Head very elongate (Fig. 77); lengh of head behind cye: horizontal length of eyc $=$ 1.0:1.0. Ocelli small: distance between posterior ocelli; transverse diameter of posterior ocellus: shonest distance betwcen posterior ocellus and eyc $=20: 1.0: 4.0$.
Mcsusoma 20 times longer thati suaximally high. Antescutal depression well-developed. Scutcllar sulcus shallow with few weak purctures. Scutellum prortuding in prolile.
Forewing. Lengths of veins SR1: $3-\mathrm{SR}$ r $=5.3$: 2.85: 1.0. Lengthis of veins 2-SR: 3-SR: $\mathrm{r}-\mathrm{m}=$ $1.56: 2.5: 1.0$. Vein r-m largely unselcrotued. Vein $1-S R+M$ rather strongly curved. Veins $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ and $1-\mathrm{SR}$ forming an angle of approximately 80°. Vein cu-a interstitia). Vein CUIb almost as long as 3-CU1.
Hundwing Vein C+SC+R very thick, apex with a single, very latge, specialized catch bristle (Fig. 103). Base of wing evenly setose.

Fore tibia with a well-developed longitudinal row of pegs (Fig. 82). Length of fore fenur: tibia: larsus $=10.1 .16: 1.45$. Iength of hind lemur: ubis: basitarsus $=1.95: 2.9$: 1.0 .
Metasonia largely smooth and shiny. First tergite more of less parallel-sided; baised median arcat with weak aregular, longiudinal siriate seulpture Second tergite 1.62 times wider than medially long, whit a large, acute, |riangular midbasal area bordeted on each side by a finely crenulate growve; with sub lateral, curved. longitudimal, timely crenulate grooves. Second suture simuous, crenulate Third tergite with well develapod antern-fateral areas. Tergites 3 . 6 smooth and thong. withum transverse sub-posterion grooves, with postenor margins membranous. Ovipostur (exsented part) approximatoly 0.85 thenes length of forewing.
Lirgely piceous hrown except followng: head orange-yellow. mesosuma and lergites 57 , black posteriou (membranous) maryins of ter. gites $4-6$ jvory white. Wings light brown with danker brown venation

Bracon Fabricius
(Fig. 51, 53)

Synnmems. Mcrobracon Ashmead; Amicoplidto Ashmead, Macradyctam, Ashneasd: Tropidobracon Ashmead, Lrobrwion (Ashmead) Nason: Selioches Brethes.

FIGS 12-19. Wings: 12, Africadesha tobiasi sp.nov., \& paratype; 13, Trigastrotheca sp., I (African species); 14, Calcaribracon (Calcaribracon) diores (Cameron); 15, Tropobracon sp., if (African species); 16, Vipiomorpha ypsilon Tobias, $?$ (Russian specimen); 17, Mollibracon bimaris (Turner), $9 ; 18$, Hybogaster sp., 오 (Papua New Guinea specimen); 19, Virgulibracon endoxylaphagus sp.nov., ㅇ.

A vast cosmopolitan genus of small wasps which parasitize a wide range of other insects (Quicke, 1988b). Concealed Lepidoptera larvae are the commonest hosts followed by Coleoptera, Diptera, and Hymenoptera-Symphyta (e.g. Austin \& Faulds, 1989); in Australia, gall forming Homoptera also appear to be attacked (Chadwick \& Nikitin, 1975) but this record should be checked by careful obscrva-
tion of larval fecding habits. To date only approximately twenty species have been recorded from Australia (Parrot, 1953; Austin \& Faulds 1989). However, this is a considerable underestimate and the true number of Australian species is probably in the hundreds. The genus occurs throughout Australia and is morphologically ratherdiverse therewith somedistinctivespecies groups.

Calcaribracon Quicke

(Figs 11, 14, 27, 52, 91, 95)
A small genus ranging from Queensland through New Guinea, Indonesia and Malaysia to SE China and Japan. Keys to the species have been provided by Quicke (1986a, 1988d). Three species are known from Australia, all from Quecnsland, viz. C. (Arostrobracon) walkeralis (Shenefelt), C. (Arostrobracon) diores (Cameron) and C. (Arostrobracon) willani sp.nov. The Australian specimen of C. diores examined differs from the New Guinea specimens in the colour of the hind coxa and femur (yellow not black) and in having forewing vcin cu-a lcss strongly curved. Thus it may in future be found to represent a further new species. We have also included the nominal subgenus in the generic key presented here though all known members of that group have a more northerly distribution (Papua New Guinea to China and Japan). Nothing is known of the biology of the Australian members of this genus but one Japanese specics has been reared from larvae of members of the sesiid moth genus Paranthrene (Maetô, 1992), while a specimen of C. ferax (Smith) from Papua New Guinea in the BMNH has a label 'reared ex cerambycid larva' (Quicke, 1986a); while the former record is definitely correct and agrees better with the known hosts of the related genus Myosoma (Quicke, 1989c), the latter record could be crroneous.

Key to Australian speeies of Calcaribracon

1. Pterostigma, base of forewing vein r (usually), and 2nd metasomal tergite largely yellow or orangeyellow (Fig. 11); basal fifth to half of forewing yellow (Fig. 11)
.. 2

- Plerostigma, forewing vein r and $2 n d$ metasomal tergite entirely piceous brown or black; forewing uniformly dark brown \qquad C. diores (Cameron)

2. Propleuron, propodcum, mid-legs, hind femur, median area of 1 st metasomal tergite, metasomal tergites 3-7 piccous or black (Fig. 11); basal half of forewing yellow, \qquad C. willani sp.nov.

- Mesosoma and metasoma up to the 7th tergite, midlegs and hind leg except apex of tibia and tarsus, yellow or orange-yellow; forewing with only basal half of basal and sub-basal cclls yellowC. walkeralis (Shenefelt)

Calcaribracon (Arostrobracon) willani
 sp.nov. (Figs 11, 52, 91)

Material Examined

HoLOTYPE: of with the following label: "Zillmere Brisbane, Q. 27 August 1988 G.V. Maynard'. Deposited in QMBA.

DESCRIPTION (\%)

Length of body 8.3 mm , of forewing 8.8 mm , of ovipositor (part exserted beyond apex of metasoma) 1.1 mm and of antenna 8.0 mm .
Antenna with 65 flagellomeres. Terminal flagellomere acuminate, 1-8 times longer than maximally wide. Pcnultimate flagellomere 1.25 times longer than wide. Median part of flagellum rather flattened, median flagellomeres at their widest approximately 1.6 times wider than long. First flagellomere 1.7 times longer than both the 2nd and 3 rd separately, the latter being 1.2 times wider than long. Height of eye: width of face: width of head $=1.1: 1.0: 2.0$. Eyes sparsely setose. Lateral half of frons moderately densely with short erect setae. Horizontal length of head behind eye: horizontal length of eye $=1.0: 1.37$.
Mesosoma 1.7 times longer than high. Mesoseutum almost totally glabrous.
Forewing. Lengths of veins SR1:3-SR:T $=$ 3.5:2.2:1.0. Lengths of veins 2-SR:3-SR:r-m $=$ 1.37:2.2:1.0. Vcin r-m with 2 distinct bulli. Vein cu-a antefurcal, strongly bent.
Hindwing. Lengths of veins $1 \mathrm{r}-\mathrm{m}: \mathrm{SC}+\mathrm{R} 1=$ 1.05:1.0. Apex of vein $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ with one espeeially thiekened bristle. Vein 2-CU almost reaehing wing margin.
Lengths of fore femur: tibia: tarsus = 1.0:1.13:1.33. Lengths of hind femur: tibia: basitarsus $=2.3: 2.8: 1.0$. Hind basitarsus 3.3 times longer than deep.
First metasomal tergitc approximately 2.0 times longer than maximally wide, flattened latcral areas of tergum virtually absent sub-posteriorly. Ovipositor (part exscrted beyond apex of metasoma) 1.5 times longer than hind basitarsus: 0.1 times length of forewing.

Black except the following which are bright orange-red: pronotum (largely), mesoscutum, scutellum mesopleuron, mesosternum, tegulae, metanotum, postcrior of propodeum, apex of fore femur, forc tibia (except spur), fore tarsus, lateral areas of 1 st metasomal tergite and 2 nd metasomal tergite. Forewing yellow basally, brown apically with yellow pterostigma (Fig. 11).

FIGS 20-26. Wings: 20, Euurobracon latitempus Quicke; 21, Ligulibracon sp.; 22, Megalommum sp.; 23, Ennesanlax sp.; 24, Paranesaulax sp.; 25, Vipiellus sp.; 26, Rostraulax sp.

ETYMOLOGY

Named after Richard Willan for his kindness and help during DLJQ's visit to Australia.

Callibracon Ashmead
(Figs 50, 64)
Synonyms. Poecilobacon Cameron syn.nov.
This is a vast, mostly Australian genus of me-dium-sized to large (and often common) braconines that are greatly in need of taxonomic revision. Previously species were often referred to under the genus Ipobracon Thomson (a junior synonym of Cyanopterus Haliday). Species have been reared from a variety of wood-boring,
coleopterous hosts including Elateridac and Scolytidac, and three spccics have been collected in association with Eucalypius infested with the cerambycid genus, Phoracantha (Quicke, 1989c; Quicke et al., 1992). Some species are gregarious parasitoids.
The genus Poecilobracon Cameron (type species: Poecilobracon flaviceps Cameron 1901: 122) is treated here as a new subjective synonym of Callibracon since examination of a large number of specimens has shown that the characters used by Quicke (1987b) to distinguish between these, viz. scapus length and metasomal sculpture, show great variation and cannot therefore be used as generic characters.

Campyloneurus Szépligeti

(Fig. 62)
Synonyms. Monolcia Enderlein; Diolcia Enderlein.
A medium-sized genus of small to mediumsized wasps which are found from India and Japan to Australia. Several species are reported from Australia (Parrott, 1953) but only two appear to be common. Several Australian species included under Campyloneurus in the past are referable to Pycnobraconoides gen.nov. Australian species of Campyloueurus species appear to be largely or perhaps exclusively parasitoids of cerambycid larvae, one Australian species having frequently been reared from members of the cerambycid beetle genus Zygrita on a variety of legumes including soya-bean. However, there is a record from grass tree (Xanthorrhoea) stems that were infested with both Curculionidae and Cerambycidae. Two host records from India suggest that elsewhere Campyloneurus spp. may also attack stem-boring pyralid moth larvae (Quicke, 1989c). The available evidence suggests that at least some species are gregarious parasitoids.

Cedilla Quicke

(Figs 94, 124)
Known from only a single Australian specics of medium-sized Aphrastobraconini (Quicke \& Tobias, 1990). Nothing is known of its biology though the typc specimen of the type species was collected at light indicating that they may bo crepuscular or nocturnal as appears to be commonly the case with Australian Aphrastobraconini (Quicke, 1992).

Chaoilta Cameron

(Figs 34, 35, 36, 37, 38, 39, 40, 44, 69)
Synonyms. Blastomorpha Szépligeti; Platybracon Szépligeti; Iphioilta Ramakrishna Ayyar.
A rather small genus of medium-sized to largc braconines. Distributed from India to Australia, most species have been described from Indonesia and New Guinea. The five Australian species werc treated by Quicke (1991a); C. (Blastontorpha) decorata Szépligeti is restricted to north Queensland the other four species belonging to the nominal subgenus are more widespread. Nothing is known of the biology of Chaoilta. However, the closely related genera Atanycolus Foerster, principally from the Holarctic, and Odontoscapus Kriechbaumer from the Afrotropical Region are both parasitoids of bark-boring
coleopterous larvae, particularly of the families Bostrychidae and Buprestidae (Quicke, 1988b, 1989c).

Curriea Ashmead

A small genus of the tribe Aphrastobraconini originally described from the Afrotropical Region but widespread through the Old World tropics and recorded from Australia for the first time by Quickc (1992). We have seen several Australian species, all of which appear to be undescribed.

Esengoides Quicke

A small genus of the tribe Braconini known from only two species: E. fulvus Quicke from Australia (north Queensland) and E. crenulatus Quicke from the Solomon 1slands (Quicke, 1989b). Small wasps with wing lengths less than 5 mm . Nothing is known of their biology.

> Eucurriea Quickc
> (Figs 28, 31, 43)

A small genus of medium-sized wasps previously confused with Megalommun and Curriea Ashmead (see Quicke \& Tobias, 1990). Frequently collected at light (Quicke, 1992); nothing else is known of their biology.

Eunesaulax Tobias

(Figs 7, 23, 60, 68, 135, 136)
A small genus of medium-sized rather slender wasps, known from three Australian species, E. terebratus Tobias, E. nigriventris Tobias and E. radialis Tobias (Quicke \& Tobias, 1990). The wing venation is fairly distinctive but the form of the ovipositor apex shows considerable variation (Fig. 135 cf .136). Nothing is known of their biology and their relationships are still uncertain.

Euurobracon Ashmead
 (Figs 20, 48, 56, 96)

Synonyms. Delmira Cameron; Exobracon Szépligeti; Lissobracon Cameron.
lt is not known for certain whether this genus occurs in Australia. A single specimen of E. latitempus Quicke was found in a Queensland collection but it lacked data (Quicke, 1989a). Howcver, as Euurobracon occurs in Papua New Guinea it is quite likcly that it also occurs at least

FIGS 27-34, Fcatures of scapus and pedicellus: 27, Calcaribracon sp., medial aspect; 28, Eucurriea sp., lateral aspect; 29, Ligulibracon sp., lateral aspect; 30, Hybogaster sp., ventro-medial aspect; 31, Eucurriea sp., medial aspect; 32, Iphiaulax sp., lateral aspect; 33, Iphiaulax sp., apico-ventro-medial aspect; 34, Chaoila (Chaoiha) sp., lateral and medial aspects.
in far north Queensland. Euurobracon species are large wasps, sometimes with extremely long ovipositors (van Achterberg, 1986; Quicke, 1987b), and they have been reared from cerambycid beetle larvae living deep within wood (Quicke, 1989c).

Euurobraconoides Quicke (Fig. 8)

Medium-sized braconines belonging to the tribe Euurobraconini with wing-lengths between 9 and 11 mm . Known from a single Australian (north Queensland) species, E. longicaudis Quicke (Fig. 8). Nothing is known of its biology (Quicke, 1988c) but one specimen is labelled as having been collected in rainforest.

*Furcadesha Quicke

Small wasps belonging to the Adeshini. Known only from the type species F. huddlestoni from India and F. walteri sp.nov. from south-west Queensland. Nothing is known of the biology of any of the Adeshini though both F. walteri and the new Africadesha (q.v.) species described above were collected by vacuum suction from grass and low herbs.

Key to species of Furcadesha

1. Forewing vein SR1 more than 2.4 times longer than vein 3-SR; lateral lobes of mesoscutum extensively setose; mesosoma and metasomal tergites extensively marked with black \qquad
.......................................F. huddlestoni Quicke

- Forewing vein SRI less than 1.8 times longer than vein 3-SR; lateral lobes of mesoscutum largely glabrous except postero- medially and along line of notaulus; mesosoma and metasoma entirely brownish ycllow to brownish orange \qquad F. walleri sp.nov.

Furcadesha walteri sp.nov.

(Figs 81, 89, 110, 111)

Material Examined

Holotype: $\frac{?}{}$ with the following labels: 'MT. Nebo, S.E. Queensland. 1.IV. 1974 1.D. Galloway' and ‘CAUGHTUSING D- VAC SUCTION NET'. Deposited in QMBA (originally from QDPI).

DESCRIPTION ($~$)

Length of body 3.1 mm , of forewing 3.1 mm and
of ovipositor (part exserted beyond apex of metasoma) 0.3 mm .

First flagellomere 1.25 times longer than the 2nd. Scapus normal, not expanded dorsally. Height of clypeus: inter-tentorial distance: tento-rio-ocular distance $=1.0: 1.6: 1.35$. Height of eye: width of face: width of head $=1.0: 1.35: 2.5$. Face smooth. Horizontal length of eye: horizontal length of head behind eye $=2.8: 1.0$. Head strongly narrowed behind eye. Shortest distance between posterior ocelli: transverse diameter of posterior ocellus: shortest distance between posterior ocellus and eye $=1.6: 1.0: 3.3$.
Mesosoma 1.65 times longer than high. Mesoscutum setose medio- posteriorly and along lines of notauli. Notauli deeply impressed, minutely crenulate. Medio-posterior part of mesoscutum rugose, otherwise mesoscutum smooth and shiny. Precoxal suture virtually absent, mesopleuron and mesosternum largely smooth and shiny.
Forewing. Lengths of veins SR1:3-SR:r = 7.25:4.5:1.0. Lengths of veins 2-SR:3-SR:r-m = 1.1:2.0:1.0. Vein 2-SR+M short; shortest distance between 1st subdiscal cell and 2nd submarginal cell: length of vein $\mathrm{m}-\mathrm{cu}=1.0: 2.7$. Vein cu-a interstitial. Vein 3-CUl slightly postfurcal with respect to $\mathrm{m}-\mathrm{cu}$.
Base of hindwing evenly setose. Posterior margin of hindwing distinctly emarginate.
Lengths of fore femur: tibia : tarsus = 1.0: 1.29:1.52. Lengths of hind femur: tibia: basitarsus $=1.3: 2 \cdot 4: 1.0$. Hind basitarsus 9 times longer than maximally deep.
Metasomal tergites largely cvenly sculptured with fine, anastomosing, longitudinal ridges separated by rows of punctures (as in huddlestoni Quicke), but 5th tergite with longitudinal striation weaker and less regular. First tergite 1.1 times longer than posteriorly wide. Second tergite 1.5 times wider posteriorly than medially long. Posterior margin of 5th tergite with well-developed perimedial projections and with lateral emarginations.

Yellowish-brown except for antennae and apices of tarsi which are piceous and ovipositor sheaths which are black. Wings slightly hyaline with brown venation.

Etymology

Named in honour of the senior author's father, Walter Jesse Quicke, for his years of patience.

FIGS 35-40. Features of scapus, pedicellus and face: 35, Chaoilha (Chaoilta) sp., scapus and pedicellus apicomedial aspect; 36. Chaoilta (Chaoilta) sp., base of scapus, lateral aspect; 37. Chaoilta (Chaoilma) sp., pedicellus, medial aspect: 38, Chaoilro (Blastomorpha) decorata, detail of apical part of pedicellus: 39, Chnoilta (Chaoilta) sp., head; 40. Chaoilta (Blastomorpha) decorata, head.

[^0]from Papua New Guinea (Quicke, 1989b). Nothing is known of their biology.

Habrobracon Ashmead

(Fig. 86)
Habrobracon is closely related to Bracon, whieh is probably paraphyletic because Habrobracon is classified separately. Cosmopolitan group of small wasps, with about twenty described species. Several speeies have been employed as biological eontrol agents principally against stored product pests and H. gelechiae (Ashmead) has been introduced into Australia. H. hebetor (Say) is also recorded from Australia where it has been reared from Cactoblastis cactortom.

Hybogaster Szépligeti

(Figs 18, 30, 47, 67, 128)
Large wasps apparently related to the Euurobraconini (Quicke, 1988a). A principally IndoAustralian genus but with one species occurring in South Afriea (Quicke, 1988a) and another in north Queensland. It should be noted however, that Parrott's (1953) record of Hybogaster from Australia is a misidentification of Iphiaulax australiensis Ashmead (Quicke, 1991a). Nothing is known of the biology of Hybogaster speeies but members of the related genus Zeuzerilia van Aehterberg are parasites of Cossidae (van Aehterberg, 1989).

Hyboteles van Achterberg

 (Figs 72, 74, 105, 115)Sinall wasps belonging to the subtribe Aspidobraconina of the Braconini. Hyboteles ranges from Brunei and the Philippines to north Australia and is monophyletic. Probably all Aspidobraconina arc endoparasitoids of butterfly pupac; Hyboteles toxopeusi van Achterberg has been reared as a solitary endoparasitoid from a lycaenid pupa in Papua New Guinea (Quieke, 1987a, 1988b).

Iphiaulax Focrster
(Figs 32, 33, 63, 129)
Synonyms. Aniphiaulax Kokoujev; Iphiaulacidea Fahringer; Euglyptobracon Telenga
A large and virtually cosmopolitan genus of medium-sized braconines. Eight Australian species were treated by Quieke (199la); several of
these had previously been wrongly placed in $C y$ anopterus Haliday or Hybogaster Szépligeti. Subsequently, the senior author has seen specimens of two undescribed Australian species in the collection of the AEIG. Nearly all members of the genus appear to be specialized parasitoids of eerambycid beetle larvae (Quicke, 1988b) but van Achterberg (1989) reported one species as having been reared from cossid moth larvae. Some speeies are frequently collected amongst mangroves and females are capable of giving a painful sting (DLJQ, pers. obs.).

Ligulibracon Quicke

(Figs 21, 42, 55, 88, 123)

A small genus of medium-sized to large Aphrastobraconini entirely restrieted to Australia; apparently only the type-species, L. levor Quieke, is deseribed though several others have been seen in collections by the senior author. Nothing is known of the biology of Ligulibracon, though, in common with other Australian Aphrastobraeonina, they seem to be at least partially nocturnal (Quicke, 1992).

Macrobracon Szépligeti

(Figs 57, 58)

A small genus of large braeonines belonging to the Mesobracon Szépligeti group (see Quieke, 1987b). Macrobracon ranges from north Queensland to south India; only one speeies, M. nobilis Turner, occurs in Australia (Shenefelt, 1978). Nothing is known of the biology of Macrobracon though mombers of the related oriental genus Pseudoshirakia van Achterberg attaek stem-boring pyralid moth larvae in grain erops (Aehterberg, 1983).

Megalommum Szépligeti

(Figs 22, 41, 49, 61)

Medium-sized speeies of Aphrastobaconini primarily from Australia, where there are many undeseribed speeies, but also occurring in Papua New Guinea. Frequently collected at light (Quicke, 1992). The ovipositors of members of this genus collectively display a great deal of variation in length and shape but typically lack apico-ventral serrations probably indicating that oviposition takes place into a soft substrate.

Mollibracm Quicke

(Figs 17, 133)
A monotypie genus of medium-sized wasps entircly restricted to Australia. M bimaris (Tumer) has been reared as a parasitoid of curcudionid larvae, Meriphus longirospris, in Banksio cones (Quicke, 1988b). Most specimens seen by us are from Western Ausiralia

Myosoma Brullé
(Figs 2, 54, 70)

Synunyms. Acomhobracun Kriechbaumer; Amyosona Vierrek
A largely neotropical genus of small to me-dium-sized Braconini but with afew mostly smaller species known from the Old World tropues (Quicke \& Wharton, 1989) Myosoma rufescens is the first true record of this genus in Austalia (see Quicke, 1988b); M. mutulor (Fahricius) belongs to Pycnobraconcides gen.nov. Myosoma spp. appear to be principally parasitoids of concealed pyralid moih larvae (Shenetelt. 1978: Quicke \& Wharton, 1989) but M. chinensis has also been reared from the larvac of the cossid Zenzera in India, and M. yonoi (Witanabe) has been reared from larvae of the sesiid Paramhtene regale in Japan (Mactỗ, 1992).

Key to Indo-Australian species of Myosoma

1. Metasomal tergites 1.5 bright orange contrassing strongly with piceous or black tergites 6-9 (Fig. 2); Iead largely blackM. nufescens sp.nov.

- Metasomal tergites unicolorous piceous or black. head variably coloured \qquad M. chimensix (Szepligeli) \& other spp.

Myosoma rufescens sp.nov.

(Fig. 2)

Material Examined

Hon.oType: © with the following labels: 'AUSTRA. LIA: ACT Canberra, Black Min, Jan 25-30. 1984 L. Masner. M1" \& "Dry selerophyl Eucalyptus for. Frour AEIG but on permanent loan to ANIC by agreement with collections manager.
Pakathe: of with following labels: 'QUEENSLAND: Mirani 34km NW Mackay X-16-79' and 'HE \& MA Evans \& A. Hook Coll.' ANIC

DESCRIPTION (\%)

Length of body 5.7 mm , of lore wing 5.5 mm
and of ovipositor (part exserted beyond apex of metasoma) 1.3 mm

First magelloniere 1.07 times longer than butt the 2nd and 3rd separately. Third fagellomere 1 is times longer than wide. Height of elypeus: intertentorial distance: tentorio-ocular distance $=1.0$. 3.7: 2.3. Face smooth medially; coriaceous and densely setose laterally. Hejght of eye: shortest distance between cyes. widh of head $=$ 1.05:1.0:2.0. Frons denscly setose except along the median line. Post-occllar line transverse diancter of postertor onellus. shortust distance between posterior ocellus and eye $=1.4: 1.0: 3.57$. Occiput largely glabrous. Horizontal length of eye 1.7 times horizontal length of head behind eyc.

Mesosuma 1.5 tmes longer thein high. Notauli weak but mpressed along whole length of mesescutum. Lateral lobes of nesoscutum glabrous.

Forewing. Lengths of veins SR1:3-SR: $r=3.9$: 3.0: 1.0. Lengths of veins 2-SR:3-SR:r-m = 1.1: 2.0: 1.0. Pterostigma 3.15 times longer than maximally wade. Vein cu-a virtually mnterstitial. Vein 1. SR +M straight.

Hindwing. Lengths of veins $|\mathrm{r}-\mathrm{m}: \mathrm{SC}+\mathrm{R}|=$ 1.0:1.7. Apex of vein $C+S C+R$ with one especially thickened bristle. Base of wing evenly sctose
Lengths of fore femur: tubia: tarsus $=10: 1.1$: 1.3. Lengths of hind femur:tibia:basitarsus $=1.9$: 2.8:1.0. Hind femur 3.2 times longer than maximally wide. Hind rarsus 7.0 times longer than maximally wide. Hind basitarsus 6.5 times longer than apically deep.

Mctasurna smooth amd shiny. First tergite approximately 2.2 times longer than maximally wide; lateral arcas namow but complete. Second tergite with antero-lateral comers with reduced selerotization. Second suture straight, narrow, quite deep. Tergates 3 to 6 with irregular, sparse, short sclosity pastcriorly.

Pale orange brown to brownish yellow except for the tollowing which are black or picenus: antennac; head except labio-maxillary complex, palps and base of mandibles; mid-and posterior legs: metasomal tergites 6 and 7: ovipositor sheaths. Wing menthrane pale brown slightly paler distally; venation and pterostigma dark brown.

DESCRIPTION (d)

As for fernale except slightly smaller and the middle leg is brownish yellow execpt for the telotarsus which is piccous.

*Paranesaulax Quicke
 (Figs 24, 99, 106, 127)

Pedinopleura australiensis sp.nov.

(Figs 78, 114, 121)

Material Examined

Holotype: \circ with following labels: 'Ayr Queensland 4 Sep. 1950 E.F.Riek'. Deposited in ANIC.
Paratype: of with same data as holotype. ANIC.

DESCRIPTION ((9)

Length of body 4.5 mm , and of forewing 4.3 mm , of ovipositor (part exserted beyond apex of metasoma) 1.1 mm and of antenna 4.1 mm .

Antenna with 36 flagellomeres. Terminal flagellomere pointed but not acuminate, 2.1 times longer than basally wide. Median flagellomeres approximately as wide as long. First flagellomere 1.3 times longer than both the 2 nd and 3 rd separately, the latter being 1.2 time longer than widc. Height of elypeus: inter- tentorial distance: tento-rio-ocular distance $=1: 2: 2$. Height of eye: width of face: width of head $=1.0: 1.5: 1.77$. Malar suture deep and narrow. Face with multiple, strong, parallel, transverse ridges. Eyes virtually glabrous. Frons and occiput tinely subtransversely carinate. Head very transverse; horizontal length of head behind eye: horizontal length of eye $=2.35: 1.0$ Post- ocellar length: transversc diameter of posterior ocellus: shortest distance between posterior ocellus and eye $=1.0: 1.0: 2.75$.
Mesosoma 1.4 times longer than high; strongly sculptured, mostly punctate. Median area of metanotum with a complete mid- longitudinal carina. Precoxal suture not impressed; indicated by a band of punctures. Propodeum with a complete mid-longitudinal carina bordered by short, rather weak crenulations.

Forewing. Lengths of veins SRI:3-SR:r = 7.3:2.8:1.0. Lengths of veins $2-S R: 3-S R: r-m=$ 1.1:1.7:1.() Vein 2-SR+M long, shortest distance between 1st discal cell and 2nd submarginal cell: length of vein $\mathrm{m}-\mathrm{cu}=1.7: 1.0$. Vein cu-a interstitial.
Length of fore femur: tibia: tarsus = 1.0:1.0:1.15. Length of hind femur: tibia: basitarsus $=1.94: 2.65: 1.0$. Hind basitarsus 4.9 times longer than deep.
Metasoma with strong rugose sculpture. First tergite with a distinct median groove posteriorly. Posterior margin of 6th tergite very weakly emarginate. Ovipositor (part exscrted beyond apex of metasoma) approximately 0.4 times length of forewing.

FIGS 41-48. Features of head: 41, Megalommum sp.; 42, Ligulibracon sp.; 43, Eucurrica sp.; 44, Chaoilta (Chaoiha) sp.; 45, Gelasinibracon sp.; 46, Pycnobraconoides mutator (Fabricius); 47, Hybogaster sp.; 48, Eiurobracon latitempus Quicke.

Enfurely loney-yellow exeept for antennac, hind tarsi, and ovipositor sheaths which are black or piceous, Wing membrane pale sellow terding to hyaline distally: vein $C+S C+R$ and pterostigma piceous, remainder of venation yellowish.

Description iö)

Very similar to femaile except smaller and posterior margin of 6th metasomal tergite only marginally emarginate and antenna dark rufous.

Ploceibracon Quicke

(Figs 75, 79, 1001)
Known only from the type species, P. monstrans Quicke, from New South Wales. The holosype of P. monstrans has a small dark thark indicating a trace of hindwing vem 3-CU and, lugether with the strong spur from fore-wing vein 3-CUI, this may indicate a relationship with Calcaribrcem Nothing is known of its biology.

> Psitiacibracon Quicke
> (Figs 9.10, 132)

A rare monotypic genus of medium-sized Braconini entirely restrieted to Australia. Psitracibracon lacteolus Quicke (Figs 9, 10) is known from a few speciniens from South Australia, Western Australia and New South Wales. Nothing is known of its biology.

Pyenobraeonoides gen nov,
(Figs 6, 46. 130)

Type Species

Irhmeamon mutarar Eabricius 1775: 335

Diagnosis

Pycrobraconoides can be distinguished from other members of the tribe Braconini (sensu van Achterberg, 1983) by the following combination of characters: (i) head very transverse: (ii) cyes usually moderately to very selose; (iii) precoxal suture absent; (iv) hindwing vein $1 \mathrm{r}-\mathrm{m}$ much shorter than vein SC+R1 (v) 2nd submarginal cell of forewing long; (vi) claws with sounded basal lobes; (vii) propodeum simple, without a nidlongitudinal carina; (viii) metasoma robust, 3 rd lergite more than 2 times wider than long: (ix) ovipositor robust, withour a pre-apical dorsal nodus but distinctly pre-apically expanded (Fig. 130); (x) mandibles (except for apex) white.

Generic Descriftion

Antennae shorter than forewing, with approximately 40 flagellomeres. Terminal flagellomere scuminate. Median nagellomeres marginally longer than wide. Scapus small, shorter vemually than dorsally in lateral aspect; not apico-medially emarginate. Labio-maxillary complex shont. Mandibles ivory-white except for darker apex. Clypeus angled into hypoclypeus but without a transverse median catina: separated from face dorsally by a groove. Face smooth and shiny, setose. Eyes usually moderately to very densely setose: distinctly emarginate. Frons weakly impressed, largely setose, with a well-developed mid- longitudinal suleus. Head very transverse; horizontal length of eye approximately 2.5 times longer than horizontal length of head behind eye.
Mesosoma smooth and shiny approximately 1.3 times longer than high. Mesosotum largely glabrous except for along line of notauli. Notauli weakly impressed anteriorly. not impressed posteriorly. Scutellar sulcus narrow, crenulate. Precoxal suture absent. Mesopleural suture smooth. Mcdian area of metanotum not carinate. Propodeum wilhoul carinac. Propodeal spiracle small, round, situated neas middle of propodeum.
Forewing. Vein 1-SR+M more or less straight. Vein $2-S R+M$ short, more or less interstitial. Second submargimal cell long, vein 3- SR approximately 0.8 times length of vein SR1. Veins $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ and 1-SR forming an angle of approximately 75°. Vein or-m unselemtized. Vein cu-a interstitial.
Hindwing. Vein Ir-m much shorter than vein $S C+$ RI. Ape: of ven $C+S C+R$ with only one especially thickened bristle. Base of wing cyenly setose.
Claws with rounded basal lobes. Hind tibia slender, with indistinet longitudinal, lateral groove.
Metasoma short, wide, ruhust, largely with rugose to strong punctate seulpture but largely smooth in some species. First lergite with dorsolateral carinae; raised median area sculptured pasteriorly, strongly sloping, smooth anteriorly. Sccond tergite wide, with or without elongate median area (defined largely by difference in sculpture); anterolaterally with a pair of longitudinal, sub-parallel grooves. Tergites 3 to 5 with posterior margins rounded in profilc, rarcly 5th with a weak transvetse, subposterior groove. Ovipositor robust. pre-apically smoothly expanded pre-ipically (Fig. 130), ventral valves without or with extremely reduced serrations; pan exserted

FIGS 49-58. 49-5i, apex of hindwing vein $C+S C+R$ showing specialised bristles: 49, Megalommum; ; 50, Callibracon sp.; 51, Bracon sp. 52-58, features of claws: 52, Calcaribracon willani sp.nov.; 53, Bracon sp.; 54, Mysosoma sp.; 55, Ligulibracon sp.; 56, Euurobracon sp.: 57-58, Macrobracon sp.
teyond apex of metasuma shghtly shorter than medial length of metasomal tergite $2+3$.

Males

Very similar to females. Intertergal metasumul glands well-developed with a pur of large saclike reservoirs (Quicke, 1990). Genitalia: digitus with a single apical tooth; parameres with only a single row of setae apically.

Biology

From many, largely unpublished, records it is clear that Pycnobraconoides gennov. is a specialised parasitoid of cryptocephaline chrysomelid beetle larvae (Quicke, 1988b). The beelle larvae (and pupac) live in a casc from which single specimens of Pycnobraconoides commonly emerge. The following cryplocephalines have been recorded as hosts of various species of Pycnobraconoides: 'Cadmus' aurantiacus, Cyptocephalus speciosus, Lachnabothra sp., and Prasonotus sp. It is presumed but not proven that Pycnobraconvides is ectoparasitic.

Discussion

Pycnobraconmides geninov, appears to be mess closely related to the oriental genus Pycnobracon Cameron which was originally described from India (Cameron, 1902), and recently members of the new genus have been dealt with under Pyonco. bracon. However, it has been recognised for some time that the Australian representutives do not fil well in Pycnobracon. Indeed, Quicke (1987b) considered Pycnobracon to comprise twis sections; those keying out at couplet 108 (loc. cit.), which are referable to Pycnobracon sensu stricto: and those keying out at couplets 90 and 94, which are placed here minder Pyenobres. conoides gen.nov. In particular, Pycnohraromuides differs from Pycnoluracon in having a robust ovipositor without a pre-apical dorsal nodus and an extremely transverse head, The biologies ol the two genera also dilfer considerahly with Pyenobracon sensu suticto parasitic on pyralid moth larvae while Pycnobraconoides at. tacks case-bearing Chrysornclidite (sce athue). Within Australia, the new genus is widely distributed and specimens representing a simall number of species have been seen from Australian Capital Territory, Queensland. New Soutl Wales, Tasmania and Western Australia

[^1](= Eraron froggattii Cameron, 1911: 339); hetotype in BMNH examined.
Pythobraconoides mututor (Fabricius) comb. nov. (= tphuukax bipartitus Szépligeti 1905:35; junior subjeclive synonym, Quicke, 19910).

*Rostraulax Quicke

(Fig. 104)

Roxrraulax species are medium-sized wasps found primarily in Indonesia and New Gainea, Onc species, R. .xanthocepholus (Turner), is found in Quecnsland and northem New South Wales rainforests as well as in Papuan New Guinca. Nothing is known of the biology of Rostranlar but the apparently related genus Cratubracon has been reared from wood-boring ccrambycid larvae (Quicke, unpubl. obs.). Rostrumbur is very closely related to Shelfordia Cameron and may need to be synonymized with that genus (van Acheerterg, pers, comm.).

Serratobracon Tohias

(Figs 83, 85, 107)

This genus is known from only a single specimen from the Northern Territory which has al highly characteristic combination of pedicellus and scapus morphology. It affilitics were discussed by Tohias in Quicke de Tobias (1990), who concluded that it may be related to cillier Syhibracon Quicke or to the Aranycolus group of gencra (Quicke. 1987h). However, neither of these placements is satisfactory and more material needs to be studied.

Simplicilracon Quicke

(Figs 5, 76, 102)

Previously. species of this genus were only known from Taiwan (Quicke, 1988e) and Japan (Mactó, 199I). In addition to these and the new Austratian species, the senior ather has seen specimens of another new species from 1iji. In Simplicibracom, the sirongly developed irunsverse median clypeal carina (Fig. 76) is quile distinctive and niost species (except for two scen from Japan) have hind wing vein 2-SC+R slightly transversc. The one species for which the biology is known, S. curricaudis Mactô, is a parasitoid of leaf-galling Cecidomyiidac on broad-leaved, evergreen! Irees (Maetô, 1991).

Key to the species of Simplicibracon (\circ 우 only)

1. Hindwing vein $2-\mathrm{SC}+\mathrm{R}$ longitudinal (see Fig. 101); ovipositor (part exserted beyond apex of metasoma) less than 0.25 times length of forewing: metasomal tergites unicolorous brownish yellow to yellowish brown; 2nd metasomal tergite less than 1.8 times wider than medially long
.S. curlicaudis Maetô

- Hindwing vein 2-SC+R transverse (Fig. 102); ovipositor (part exsented beyond apex of metasoma) more than 0.35 times length of forewing; metasomal tergites brownish yellow to whitish yellow, marked with brown or black blotches on tergites 2 and 3 or 3 and $4 ; 2$ nd metasomal tergite more than 1.8 times wider than medially long 2

2. Notauli crenolate; metasomal tergites metasomal tergites 5-7 yellow-brown, same as tergites 1 and 2.
S. maculigaster Quicke Notauli smooth; metasomal tergites 5-7 creamwhite, different from tergites 1 and 2
S. nigritarsus.sp.nov.

Simplicibracon nigritarsus sp.nov.

 (Figs 5, 76, 102)
Material Examined

Holorype: of with the following labels: '15.41S 145.12E Annan Riv. 3 Km WhyS Black Mr. 26-27 Apr. 19810, I.D. Naumann ex ethanol' \& 'collected at light'. Deposited in ANIC.

Description (q)

Length of body 4.2 mm , of fore wing 4.6 mm , of ovipositor (part exserted beyond apex of metasoma) 1.9 mm , and of antentia 4.1 mm .
Antennae with 32 flagellomeres, First flageltomere 1.3 times longer than both the 2 nd and 3 rd separately, the latter being 1.5 times longer than wide, Transverse median elypeal carina strongly protruding. Height of clypeus (upper part): intertentorial distance: téntorio-ocular distance $=$ $1.0: 1.82: 1.63$. Face shiny with moderately welldeveloped punctures at the bases of the setae. Height of eye (measured parallel 10 face): width of face: width of head $=1.0: 1 \cdot 18: 2,36$. Face 2 times wider than high. Eves weekly setose. Frons without a mid-longitudinal nidge; weakly im pressed. Shortest distance between posterior ocelli: transverse diameter of posterior ocellus: shortest distance between posterior ocellus and cус $=1.43: 1 \cdot 0: 3.14$.
Mesosoma 1.24 times longer than high. Pronotum largely smooth and shiny with narrow creniulate groove laterally. Mesonotum moderately
setose posteriorly and laterally but anterior thind of middle lobe virtually glabrous. Notauli mojerately impressed, not crenulate. Precoxal suture represented by only a weak rounded depression.
Forewing, Lengths of veins SR1:3-SR:T $=$ 5.6:1.9:1.0. Lengths of veins 2-SR: 3-SR: $\tau-\pi=$ 1.6:1.9:1.0. Vein $\mathrm{r}-\mathrm{m}$ with only a single posterior bulla and associated flexion line. Length of vein m -cu; shortest distance between 1st subdiscal cell and 2 nd submarginal cell $=0.8: 1.0$.
Hindwing. Base of wing more or less evenly, densely setose. Vein 2-SC + R distinctly transverse, Apex of vein $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ with only one especially thickened bristle.
Lengths of fore femur: tibia: tarsus $=$ 1.0:1.13:1.3. Fore tibia moderately densely with strong spine-like setae antero-laterally. Lengths of hind femur: tibia: basitarsus $=1.8: 2.55: 1.0$. Hind tibia very robust, 6.1 times longer than maximally deep. Hind basitarsus 4.4 times longer than deep.
Metasoma with rugulose sculpture. Second tergite 2.1 times wider than medially long. Ovipositor (part exserted beyond apex of metasoma) approximately 0.4 times length of forewing.
Brownish yellow except for the following: antennae, hind tibia except extreme base, hind basitarsus, a pair of large submedial marks on the 3nd and 4th tergites, ovipositor sheaths, black. Lateral parts of 3 r and 4 th tergites and all except for a mid- longitudinal yellow line on tergites 5 to 7 . white. Wings pale smoky brown with brown venation.

Note

The holotype of S nigritarsus sp.nov is the same specimen as referred to by Quicke (1992).

Stenobracon Szépligeti

(Fig. 93)
Synonyms. Elphea Cameron; Phanaulax Cameron.
A small genus of medium-sized wasps belonging to the tribe Batbyaulacini. One probably undescribed species is found in the north of Western Australia in the Kimberleys. Elsewhere, Stenobracon spp. are important parasitoids of Lepidoptera larvae that bore in stems of grain crops (Quicke, 1983; 1988c) but nothing is known about the biology of the Australian species.

Stigmatobracon Turner

(Figs 1, 131)
A small genus of medium-sized to large wasps.

FIGS 59-67. Features of the metasoma: 59, Tropobracon sp. (African) T1-T4, 60, Eunesaulax sp., T1-T2; 61, Megalommurn sp., T1-T2; 62, Campyloneurus sp., Tj1-T2; 63, Iphiaulax sp., T1-T3; 64, Callibracon sp, T1; 65, Virgulibracon sp., T1-T2, 66, Vomeribracon sp., T1; 67, Hybogarter sp.. T1.T4

A key to the four deseribed species, all from Australia, is provided by Tumer (1918). However, the senior author has seen a female of S. xanthostigma Turner from Papua New Guinea and also males with somewhat different colouration also from Papua New Guinea These may represent a new species, though the possibility of scxual dimorphism in this group cannot be ruled out, Nothing is known of their biology though one species has been collected amongst mangroves (Rhizophora) in north Queensland, and other specimens have been collected in the Northern Territory, Victoria and Western Australia.

Testudobracon Quicke
 (Figs 116-120)

Small wasps belonging to the Braconini. Only a few species have been described but we are aware of many undescribed ones from both Africa and the Indo-Australian region. Testudobracon species are ápparently specialist ectóparásitoids of gall-forming, cecidomyiid Diptera, especially - and perhaps exclusively - Asphondylini (Quicke 1986a; Maetô, 1991). This is also partly confirmed by an Australian host record for the genus, based on an apparently undescribed species represented in the QDPI collection, which had been reared from a gall on 'A. polycarpa'.

Key to the species of Testudobracon (우 ㅇ only)

1. Median emargination of 6th metasomal tergite shallow and with rounded lateral margms (Fug. 120); ovipositor (exserted part) at least 0.75 times length of forewing; precoxal suture (if distinguishable), represented by a week, completc, narrow, longitudinal groove
.. 2

- Median emargination of 6th metasomal tergite deep and with sharply defined (angular') Lateral margins (Figs 117, 118); ovipositor (exserted part) less than 0.75 times length of forewing; precoxal suture present as a deep, smooth, rounded pit \qquad

2. Hind leg almost entirely pale yellow-brown; metasomal tergites 4-6 largely whitish, except for basal (anlerior) third which is yellowish and pos-tero-lateral lobes which are somewhat darker; vertex with distinct fine transverse, striale sculpture; metasomal tergites 4-6 rugulose \qquad
T. Longicaudis Maetó

- Hind leg almost entirely black: metasomal tergites 4-6 with basal (antcrior) half black or piceous brown, and posterior half white; vertex totally smooth and shiny; metasomal tergites 4-6imegu-
larly punctate (Fig. 120) T. australicoloras sp.now

3. Postero-lateral margin of fth metasomal tergite with a pointed protuberance (Fig. 116)
.4

- Postero-lateral margin of 6th metasomal tergite with a rounded lobe-like proruberance (Fig. 119)

4. Middle lobe of mesoscutum largely glabrous except for line of notauli; body and legs virtually entirely brownish yellow \qquad T. unicalorus sp, oov

- Middle lobe of mesoscutum largely setose (except for anterior face); body and legs commonly with black or piccous markings especially frons, vertex, part of mesopleuron, metanotum and propodeum, middle coxie and hind coxa and hind fentur T. pleuralis (Ashmead)

5. Body and legs (except telotarsi) entirely pale brownish yellow: postero-lateral margin of 6th metasomal tergite hardly produced \qquad T. tatyanae sp.nov,

- Body and hind legs extensively marked with black and dark reddish-brown, metasoma with obvious pattern of dark red, black and white
T. niger Quicke

Testudobracon australicolorus sp.nov.
(Fig 120)

Material Examined

Holotype: of with following labels. 'Mackay Quecensland 1909-45', '834' \& 'Mackay 3.92'. In colllection of BMNH.

DESCRIPTION (字)

Length of body 3.7 mm , of forewing 3.6 mm and of ovipositor (part exserted beyond apex of metasoma) 2.9 mm .
First flagellomere 1.1 times longer than both the 2 nd and 3 rd separately, the latter being 1.8 times longer than wide. Height of clypeus: intertentorial distance: tentorio-ocular distance $=$ I.0:2.2:1.58. Malar space 0,23 times height of eyc. Face smooth and shiny medially, finely coriaceous laterally, without an obvious mid-longitudinal ridge. Height of eye: width of face: width of head $=1.0: 1 \cdot 1: 2.1$. Eyes sparsely short setose. Frons finely coriaceous medially, smooth and shiny laterally. Shortest distance between posterior ocelli: transverse diameter posterior ocellus: shortest distance between posterior ocellus and eye $=1.65: 1.0: 3.5$. Horizontal length of eye 2.6 times horizontal length of head behind eye.

Mesoscutum smooth and stiny, setosity largely restricted to line of notauli. Precoxal suture rep-

FIGS 68-74. Features of the metasoma: 68, Eunesaulax sp., T1-T2; 69. Chaoilra (Blastomorpha) decorata Szépligeti, T1-T2; 70, Myosoma sp. (Indo-Australian), T1; 71. Gelasinibracon sp., T1-T5; 72, Hyboteles sp., T5-T6; 73, Gelasinibracon sp., T1-T3: 74, Hyboreles sp., T1.

FIGS 75-85. Features of head, mesosoma and legs: 75. Ploceibracon monstrans Quicke; 76, Simplicibracon nigritarsus sp.nov.; 77, Atanycolus australiensis sp.nov.: 78, Pedinoplenra chustraliensis sp.nov.; 79, Ploceibracon monstrans Quicke; 80, Atanycolus austruliensis sp.nov., base of antenna, dorso-lateral and dorsal aspects; 81, Furcadesha walueri sp.nov,. scapus, lateral aspect; 82, Alanycolus custraliensis sp.nov., fore tibia; 83, Serratobracon cardaleae Tobias, fore tibia; 84, Atanycolus australiensis sp.nov., profile mesoscutum and pronotum; 85, Serratobracon cardaleae, scapus and pedicellus, lateral and dorsal aspects.
resented by a complete but very weak, smooth, longitudinal groove.

Length of forewing veins SR1:3-SR:r $=$ 5.2:2.8:1.0. Lengths of veins 2-SR:3-SR:r-m = 2.1:3.1:1.0.

Lengths of fore femur: tibia: tarsus = 1.05:1.0:1.2. Lengths of hind femur: tibia: basitarsus $=2.5: 3.1: 1.0$. Hind tibia 5.7 times longer than wide.

Second metasomal tergite 2.7 times wider than medially long, with weak parallel-sided, smooth narrow median area, and with posteriorly eonverging, antero-lateral, longitudinal grooves nearly reaching posterior margin. Third tergite 2.9 times wider than medially long. Tergites 3 to 6 with weakly-developed, rounded postero-lateral lobes. Sixth tergite weakly emarginate me-
dially. Ovipositor approximately 0.8 times length of forewing,

Head, mesosoma fore and mid legs pale brownish orange except for piceous mark on top of head. Median parts of metasomal tergites 1-3 broadly brown to piceous, laterally whitish. Tergites 4-6 basally piceous brown, posteriorly white. Hind legs black. Wings pale brown with light to dark brown venation.

Testudobracon unicolorus sp.nov.
(Figs 116, 117)

MATERIAL EXAMINED

Holotype: ㅇ with following labels: 'S.E. Quecnsland, Tamborine Mts. 19-26. iv. 1935^{\prime} and 'AUSTRALIA: R.E.Turner B.M. 1935-240'. In BMNH collection.

DESCRTPTLON (?)

Length of body 2.6 mm , of forewing 2.9 mum and of ovipositor (part exserted beyond apex of metasoma) 1.7 mm .

First flagellomere 1.2 and 1.4 times longer than the 2 nd and 3 rd respectively, the latter being 1.7 times longer than wide. Height of clypeus: intertentorial distance- tentorio-ocular distarice $=1.0$: 2.3: 1.7. Face largely finely coriaceous. Height of eye: width of face: width of head $=1,0: 1.1: 2.05$. Eyes glabrous, not emarginate. Top of head shiny. Shortest distance between posterior ocelli; transverse diameter posterior ocellus: shortest distance between posterior ocellus and eye $=1.2 ; 1.0: 2.9$. Horizontal length of eye 2.5 times horizontal length of head behind eye.

Mesosoma approximately as long as high. Notauli weak but distinct along whole length. Mesosutum setose medioposteriorly, along line of notauli and laterally. Precoxal suture represented by a deep pit.

Lengths of veins SR1:3-SR:r $=6.72: 2.5: 1.0$. Lengths of veins $2-$ SR:3-SR: $\pi-m=1.25$: 1.75 : 1.0. Pterostigma 3.0 times longer than maximally wide.

Lengths of fore femur: libia: tarsus $=$ 1.0:1.0:1.27. Lengths of hind femur: hind tibia:
hind basitarsus $=2,3: 2 \cdot 75: 1,0$. Hind tibia 6 times longer than maximally deep. Hind basitarsus 4,4 times Jonger than deep.

Second metasomal tergite 2.47 times wider than medially long; more or less uniformly foveate rugose, without mid-basal area and with only weak sub-lateral grooves anteriorly. Third tergite 2.57 times wider than medially long. Tergites 3-5 with well-developed, rounded, posterolateral lobes. Tergite 6 postero-laterally with a pointed prominence and medially deeply semioncularly incised.

Uniformly pale brownish yellow except antennae and ovipositor sheaths which are black. Wings very pale brown with dark brown venation.

Testudobracon tatyanae sp.nov.

(Fig, 118)

Material Examined

Holotype: q with following labels: "Mackay, Queensland. 1909-45 ' and 'Mackay 1.01'. The type specimen is the right hand of two braconids glued to a single card square, in the BMNH collection.

DESCRIPTION (i)

Length of body 2.25 mm , of forewing 2.9 mm , of ovipositor (part exserted beyond apex of metasoma) 1.6 mm , and of antenna 2.6 mm [face not visible, glued on to card].

Antennae with 23 flagellomeres. Terminal flagellomere 2 times longer than wide. First flagellomere 1.1 times longer than both the 2 nd and 3 rd separately, the latter being 1.7 times longer than wide. Head very transverse. Horizontal length of eye 2.3 times longer than horizontal length of head behind eye. Vertex and temples smooth and shiny.

Mesosoma 1.15 times longer than high. Mesoscutum setose medio- posteriorly and along lines of notauli, otherwise smooth, shiny and glabrous. Precoxal suture represented by a smooth, deep. circular pit.

Lengths of forewing veins SRI:3-SR:r $=$

FIGS 86-103. Features of wing venation: 86, Habrobracort 8p, pterostigma and 2nd submarginal cell; 87, Trigastrotheca tricolor sp.nov. 88-89, 2nd submarginal cell; 88, Ligulibrucon levor Quicke; 89, Furcadesha walteri sp.nov. 90-93, Torewing vein I-SR+M: 90, Vomeribracun $\mathrm{sp..9} 91$. Cataribracon wiltani sp.nov.; 92, Virgulibracon endoxylaphagus sp.nov.; 93, Stenobracon sp, 94-100, Ist subdiscal cell: 94, Cedilla cedilla Quicke; 95, Calcaribracon willani sp.nov: 96, Euurobracon latitempus Quicke; 97, Eunesaulax terebrator Tobias; 98, Vipiellus sp.; 99, Paranesaulax sp.nr. nitor; 100, Ploceibracon monstrans Quicke. 101-102, junction of hindwing veins It-m and SC+R1, to show orientation of 2-SC+R (betweem these): 101, Gelasinibracon sp.; [02, Simplicibracon nigrivarsux sp.nov.; 103, Atanycolus cuustraliensix sp.nov., apex of hindwing vein $\mathrm{C}+\mathrm{SC}+\mathrm{R}$.

FIGS 104-122. Features of abdomen: 104. Rostroulax xumhocephahus (Turner), '「2; 105, H3boteles toxopeusi van Achterberg, propodeum; 106, Paranesoular sp., T1-T2; 107, Serratobracon cardaleae Tobius, T3; 108 Vomeribracon sp., T1; 109, Africadesha whiasi sp.nov.. T2-T3; 110-111. Furcadesha walteri sp.nov. T5: 112-113, Trigastroheca tricolor sp.nov., T5; 114, Pedinopleura australiensis sp.nov., T6; 115, Hyoneles Ioxopeusi van Achterberg, T6; 116, 117 Testudobracon unicolorus sp.nov., T5-T6; 118, Testudobracon tatyanae sp.nov., T5-T6; 119-120, Testudobracon australicolorus sp.nov., T5-T6; 121, Pedinopleuruaustratiensis sp.nov.; 122, Pedinopleura emarginata van Achterberg, proffle of lateral margin of syntergite T1-T3.
5.7:2.0:1.0. Lengths of veins 2-SR:3-SR:r-m = 1.47:1.53:1.0.

Lengths of fore femur: tibia: tarsus $=1.0$: 1.05: 1.5. Lengths of hind femur:tibia:basitarsus $=2.8$:
3.1: 1.0. Hind tibia 5.8 times longer than maximally deep. Hind basitarsus 3.8 times longer than deep.

Metasoma more elongate than typical Testudobracon. Second tergite 2.1 times wider than medially long; without mid-basal area but with moderately-developed sub-lateral grooves. Third tergite 2.25 times wider than medially long. Tergites 3 to 5 with very weak,, rounded postero-lateral lobes. Sixth tergite with a deep, semi-circular medial emargination.
Entirely pale brownish yellow cxcept for antennae and ovipositor sheaths which are black and telotarsi which are slightly darkened. Wings weakly infuscate with brown venation.

Etymology

Named after the senior author's wife Tanya for her tolerance of things hymenoptcrological.
*Trigastrotheca Cameron
(Figs 3, 13, 87, 112, 113)
Synonyms. Coelodontus Roman: Odontopygia Enderlein.
This is a small but widely-distributed genus originally described from Africa (T. trilobata Cameron) but is also known from India, the Philippines (Quicke, 1987b) and now Australia. Nothing is known of the biology of this group of Braconini though members of the closely related genus Kenema van Achterberg have been collected on several occasions from tields of grain crops.

Key to non-African species of Trigastrotheca (우 영y)

1. Forewing vein 3 -SR more than 1.4 times longer than vein $\mathrm{r}-\mathrm{m}$; mesosoma uniformly orange; 2 nd mc tasomal tergite unicolorous, ivory white; 3rd 10 5 th metasomal tergiles orange.T. tricolor sp.nov.

- Forewing vein 3-SR lcss than 1.25 times longer than vein r-m; mesosoma black, marked with ivory white; 2nd mctasomal tergite black mcdially, white latcrally; 3rd to 4th metasomal tergites largely black, 5th ivory white \qquad T. tridentata (Enderlein)

Trigastrotheca tricolor sp.nov.

(Figs 3, 87, 112, 113)

Material Examined

Holotype: \circ with following labels: " $7-14 \mathrm{~m}$. W. of Herberton, via Watsonville' and 'N. Queensland. I May 1967 D.H. Colless'. In ANIC collection.
PARATYPE: of with same data as holotype. ANIC.

DESCRIPTION (웅)

Length of body 4.1 mm , of forewing 4.2 mm and of ovipositor (part exserted bcyond apex of metasoma) 1.3 mm .

Antenna with 40 flagellomeres. Terminal flagellomere acuminate, 2.1 times longer than wide. Penultimate flagellomere 1.3 times longer than wide. Median flagellomeres 1.3 times longer than wide. First flagellomere as long as the 2nd and 3rd separately, the latter 1.7 times longer than wide. Height of clypeus: inter- tentorial distancc: tentorio-ocular distance $=1.0: 2.5: 2.0$. Face finely punctatc to coriaceous, otherwise shiny. Malar suture narrow but well-developed. Height of eyc: width of face: width of head $=1.0: 1.2$: 2.3. Frons flat without a mid-longitudinal ridge or lamella. Top of head finely coriaceous. shortest distance betwcen posterior ocelli: transverse diameter of posterior ocellus: shortest distance between posterior ocellus and eye $=1.3: 1.0: 2.5$.
Mesosoma 1.46 times longer than high, largely with punctate sculpture on background of punctulate sculpturc. Pronotum with finely crenulate groove. Notauli distinctly impressed along whole length of mesoscutum. Pre-scutellar sulcus narrow, with 6-7 crenulae. Scutellum rather flat, with reduced sculpture. Precoxal suture weak. Posterior margin of propodeum crenulate.

Forewing. Lengths of veins SR1:3-SR:r = 5.5:2.05:1.0. Lengths of veins 2-SR:3-SR:r-m $=$ 1.15:1.5:1.0. Vcin r issuing approximately 0.4 distance from basc pterostigma. Vein 2-SR+M long, 0.3 times length of $2-\mathrm{M}$. Vein cu-a interstitial, straight, perpendicular.
Hindwing. Apex of vein $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ with one especially thickencd bristle. Base of wing with a glabrous area.

Claws with rounded basal lobes. Length of fore femur: tibia: tarsus $=1.0: 1.1: 1.2$. Length of hind femur: tibia: basitarsus =2.2: 3.0: 1.0. Hind tibia moderately slender without an obvious longitudinal, lateral groove.
Mctasomal tergites 1-5 foveate rugose. Tergite 1 with ill-defined dorsal carinae. Tergites 3-5 with well-developed antero-lateral arcas. Ovipositor (part extending beyond apex of meta-
soma) approximately 0.3 simes length of forewing.

Largely yellow-brown (ochreous) except for the following: antennac blach; head piceous brown with palps, labio-maxillary complex, labrum, mandibles except apex and two large. sub-rectangular areas laterally on the frons to temple area, pinkish ivory; two lines along the notauli, the posterior half of the muddle lobe of the mesoseutuin and the scutellum paler owhreous than remainder uf mesosoma; propleuron piceous brown; mid- and posterior legs piceous brown with the junction between fomur and lihia, and the tarsi paler brown: first and second nitasomal tergites, the antenno-lateral areas of the thisd tergite and a narrow posterior margin of the two semi-circular emarginations of the fifth tergite. ivory white: postero-lateral eomers of fith tergite piceous; ovipositor sheaths black. Wings pale brown, slighly darker apically; venation dark brown except extreme base of plerostigma which is whitish.

Tropobracon Cameron

(Figs 15, 54)
Symonym: Shirakia Viereck
Smal] specics of Braconini distributed from Ausisalia (Queensland) 10 India and Arica and also vecurting in the Palaearctic Region (China). Elsewhere, Tropobracon species have frequently been reared from pyralid moth larvae boring in stems of grain crops including rice. The esearnence of the genus in Australia was moted by Quicke (1988b).

Undabracon Quicke
 (Fig. 125)

A small genus of smatl to medium-siaed Aphrastobraconimi. Only two specics have been described, (I. merihorax Quicke from Australia and U. sinumbes (Baltazar) from the Philippines" though we have seen two other undescribed species from Australia. Nothing is known of the biology of U/udabracon though they are apparently nocturnal or crepuscular in habit (Quicke. 1992). Their arched ovipositor is reminiscent of that of another braconine genus, Zaglyptogastra Ashmead, which includes Afrotropical species
that attack twig-boring ecrambyeud beelle larvace. probably through liass holes (Quicke, 1991b). One Australian species has teen observed llying near fallen wood.

Vipiellus Roman
 (Figs 25, 48)

The species of Vipiellus are small to mediamsized braconines found only in Australm. Vipiel his is clonely related to the genera of ripbrastobracomini though if typtcally lacks the distinetive thickening of forewing vean CUlb. Species of Vipiellus have been reared several fimes from stem- buring xylaryctid larvac (Lepidoptera) meluding the macidamia twig-gurdler. Neodripra luteonacrella (Walker).

*Vipiomorpha Tubias
 (Fig. 16)

Although Vipiomorphot was orginally described on the basis of a Russian species, V. ypsilon Tohias, apparently congenerje specaes (xcur in Alrica and Australia Vipiomorploa spp. are rather small memters of the Clyptomorphinit and are the only representatives of that tabe so far found in Australia. we know of a large number of undescribed speces. Within the Glyptomorphint. Vipiomerpla is rather unspeciabized and is probahly faisly close in the bisal stoct of that tribe Nothing is known of the biology of Vipiomorphet but other Glyplommrphini are predorninanly parasitoids of cancealed Coleoptera larvac.

> Virgulibracon Quicke (Figs 19, $15,92,137,138$)

Vorgulibracon is a small genus of large, entrody Australuan wasps Nothong is known of the biology of the lype-specics, Virgulibracon vulsws Qucke. However, V. endoxvlaphagus sp.nov is a common and widespread species that parasitiscer lanate of the comsial moth Eudaryla ($=$ Vylewres of Authori). whach bores in Eucalypres trunks and branches (see athove) We have seen specimens of apparently the same species from all over Australa but, because seme differences in coloration have been olverved. it is possible that there may be several similar species involved. In addi-

FIGS 123-138. Features of the nvipositor: 123. Liguldarmen sp; 124. Cedilta tedille Duicke; 125, Unduhracon sp.: 126. Curiea sp.; 127. Puranesaulaz sp.; 128, Ilybugaster sp.: 129. Iphiawlas sp.: 130, Pycnobraconoide: froggantii (Cameron) n comb. 131. Siggmaboraconsp 132, Psintucibrucon lacteolurQuicke; 133, Mollhbracun bimaris (Tumer). 134. Africatechor tobiasi sp.nov. 135. Eunestulas terubralus Tobias: 130, Euncesaulax sp.: 137, 138, Virgulibreron endo.vhaphagus sp.pov. paratype. lower valves cetracted
131

స్N
$\xrightarrow{-\quad \text { NUN }}$
124
125
126
127
128
129
130

tion, several other undeseribed species vary in the number of hamuli on hindwing vein $\mathrm{C}+\mathrm{SC}+\mathrm{R}$, wing and metasomal coloration and the development of a spur from forewing vein 3-CU1. These wasps bore through solid wood to a depth of more than 4 cm to reach their hosts (see van Achtertberg, 1986).

Key to species of Virgulibracon

1. Metasoma, fore and mid legs and plerostigma entirely black; ovipositor (part exserted beyond apex of metasoma) less than 2.25 times longer than forcwingV. vulsus Quicke

- Metasomal tergites 1-3 (at least) fore and mid legs. and pterostigma orange to brownish orange; ovipositor (part exserted beyond apex of metasoma) more than 2.35 times length of forewing \qquad
Virgulibracon endoxylaphagus sp,nov.
(Figs 19, 92. 137, 138)
MATERIAL EXAMINED
Holotype: of with following data label: 'St Lucia, S.E. Queenstand 8 Sep 1990. Ovipositing into Endoxyla (=Xylentes of Authors) cinereus prepupa'. Deposited in QMBA.
Paratypes; 39 우 with same data as holotype. 29 and 11δ paratypes with following data label: 'St Lucia S.E. Queensland. 1 Sep 1990, G.B. Monteith. Emerging from Xyleutes Hole in 6 Eucalyptus tereficornis at 9.00 am . All in QMBA except is and 10° in Quicke Collection, Sheffield.

DESCRIPTION (9우)

Length of body. 14.5-16.5mm, of forewing $16.0-17.0 \mathrm{~mm}$ and of ovipositor $41-47 \mathrm{~mm}$.
Antenna with approximately 95 flagellomeres. Terminal flagellomere partly fused to the penultimate flagellomere. First flagellomere 1.5 and 1.8 times longer than the 2nd and 3rd flagellomeres respectively. 3td flagellomere approximately as long as wide. Malar area shallowly depressed, finely coriaccous. Height of clypeus: inter-tentorial distance: tentorio-ocular distance $=$ 1.0:6.0:3.8; clypcus without a transverse median carina, the lower part curved inwards to form roof of hypoclypeal depression. Face shiny with some punctuation. Height of eye: width of face: width of head $=1.0: 1.36: 2.5$. Face 227 times wider than high. Frons weakly impressed with a deep midlongitudinal sulcus. Shortest distance between posterior ocelli: transverse diameter of posterior ocellus: shortest distance between posterior ocel-

Ius and eye $=1.5: 1.0: 2.75$. Length of head behind eye: horizontal length of eye $=1.0: 1.82$.
Mesosoma approximately 1.47 times longer than high. Mesopleuron largely setóse. Scutellar sulcus finely crenulate.
Forewing. Lengths of veins $\mathrm{SR} 1=3-\mathrm{SR}: \mathrm{r}=$ 7.7:4.6:1.0. Lengths of veins $2-\mathrm{SR}: 3-\mathrm{SR}: \mathrm{r}-\mathrm{m}=$ 1.37-2.8:1.0. Vein 1-SR+M with well- developed spur. Vein cu-a marginally postfurcal. Vein 3 CU1 weakly expanded posteriorly. Vein CUla with a small anteriorly directed spur near its apex.

Hindwing. Vein 2-SC+R. Apex of vein $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ with one especially thickened bristle. Vein R1 with 3 or 4 proper hamules. Base of wing with a large glabrous area.
Lengths of fore femur: tibia; tarsus $=$ 1.0: 1.2:1.1. Lengths of hind femur: tibia: basitarsus $=1.52: 2,65: 1.0$. Hind tibia slender; with a distinct fongitudinal lateral groove. Hind basitarsus 9.2 times longer than deep.

Metasoma smooth and shiny. Antero-kateral parts of 2nd tergite and posterior margins of 3rd to 7th tergites membranous. Second tergite 1.3 times wider posteriorly than medially long. Ovipositor approximately 4 times longer than metasoma, 2.5 times longer than forewing.
Brown-orange except for the following which are black: antennae, mesosoma hind legs, most of metasomal tergites 4-7, ovipositor sheaths. Membranous posterior margins of tergites 3-7 pinkish white. Basal third of wings pale yellowish, apical two thitds smoky; venation largely dark brown but $\mathrm{C}+\mathrm{SC}+\mathrm{R}$ and plerostigma arange.

DESCRIPTION (6 ठ)

Mates are smaller than females; body length 11-13mm.

Virgulibraconoides Quicke

(Fig. 4)
A medium-sized genus of medium-sized wasps, which has been previously confused with Callibracon (see e.g. Ashmead. 1900), alchough they are not closely felated. Probably the majority of specjes, all of which appear to be Australian, are undescribed.

Vomeribracon Quicke
(Figs 66, 90, 108)

A small genus of medium-sized to large wasps occurring in Australia (north Quecnsland) and Papua New Guinea. Nothing is known of the biology of the only Australian species, V. ingres-
sor (Turner). However, an undescribed species from Papua New Guinea is an important larval parasitoid of the curculionid, Pantorytes szentivanyi, which is an important pest of cocoa (G. Holloway, pers. comm.).

ACKNOWLEDGEMENTS

We would like to thank the following for allowing access to specimens in their care: Kecs van Achterberg, Ted Dahms, Geoff Holloway, Terry Huston, Tom Huddleston, Ian Naumann, Gordon Nishida, Jeno Papp, Margaret Schneider. Mike Sharkey and David Wahl. Kaoru Maetô provided valuable information on the biologies of several genera, and Andy Austin prompted the examination of many specimens in connection with his reclassification of Australian Braconidae. David Hollingworth's assistance with whole insect photography is gratefully acknowledged. DLJQ also wishes to express his indebtedness to Glynn Maynard and Richard Willan for their hospitality during his stay in Brisbane.

Study of the collections of Braconinae in the Queensland University, Queensland Museum and the Department of Primary Industries, Indooroopilly was made possible by a University of Queensland Travelling Fellowship. Study of the Australian National Insect Collection was made possible by a Royal Society Australian Bicentennial Grant. This work was supported by a joint grant from the NERC to DLJQ and Dr Mike G. Fitton (Natural History Museum, London).

LITERATURE CITED

ASHMEAD, W.H. 1900 . Notes on some New Zealand and Australian parasitic Hymenoptera, with descriptions of new generd and new species. Proceedings of the Linnean Society of New South Wales 25: 327-360.
AUSTIN, A.D. \& FAULDS, W. 1989. Two new species of Bracon (Hymenoptera: Braconidae) from Australia parasitic on eucalypt leaf-mining sawAlies, Phylacteophaga spp. (Hymenoptera: Pergidae). Journal of the Australian Entomological Society 28: 207-213.
CAMERON, P. 1902. Descriptions of new genera and species of Hymenoptera collected by Major C.S Nurse at Deesa, Simla and Ferozepore, Joumal of the Bombay Natural History Society 14: 267 293, 419-449.
1911. On a collection of parasitic Hymenoplera (chicfly bred) made by Mr W.W. Fraggatt, F.L.S., in New South Wales, with deseriptions of
new genera and species. Proceedings of the Linnean Sociery of New South Wales 36: 333-345.
CHADWICK, C.E. \& NIKITIN, M.I. 1976. Records of parasitism in the families Ichneumonidae, Braconidae and Aulacidae (Hymenoptera). Journal of the Entomological Society of Australia 9:2838.

FABRICIUS, J.C. 1775. 'Systema entomologias.' (Korte: Elensburgi et Lipsiae). 832pp.
MAETO, K. 1991 . Bracond parasiwids (Hymenoptera) of the gall- making Cecidomyiidae (Diptera) in Japan. Japanese Joumal of Entomology 59: 295-313.
1992. Japanese species of the Myosonu group (Hymenoptera, Braconidae). Japanese Journal of Entomology 60: 714.
PARROTT, A.W. 1953. A systematic catalogue of Australian Braconidae. Pacific Science 7: 193218.

QUICKE D.L.J. 1983. Some new host records for genera and species of Braconinae (Hym., Bräconiae) including economically important species. Entomologist's Monthly Magazine 119 91-93.
1984. The genus Acanthodoryctes Turoer (Hymenoplera: Braconidae): Redescription and new generic synonymy. Pan-Pacific Entomaliogist 60; 97-100.
1986a. Seven new genera and species of Braconinae (Hym., Braconidae) from Australia and Indoncsia. Entomologist's Monthly Magazine 122;9. 29.

1986b. A revision of the Adeshini van Achterberg with descriplions of three new genera from the Paldeotropics (Insectu. Hymenoptera, Braconidae). Zorlogica Scripta 15: 265-274.
1987a. First host record for the genus Hyboteles van Achucrberg (Hymemoptera: Braconidae). Proccedings and Transactions of the British Entonso logical and Natural History Society 20: 122.
1987b. The Old World genera of braconine wasps (Hymenoptera: Braconidac). Journal of Natural History 21: 43-157.
1988i. Reclassification of some Bracobinac deseribed by Fabricius (Hym., Braconidae), Entomologist's Monthly Magazine 124: 201-202.
1988 b. Host relationships in the Bracoustate (Ilymenoptera:Braconidae) - How little we know! Entomological Socjely of Queenslant News Bulletin 16: 85-92.
1988 c , A new genus and species of Braconinae from Australia (Insecta, Hymenoptera, Braconidats). Zowlogica Scripia 17: 285-287.
1988 d . The division of Calcaribracon Quicke (Hym., Bracondac) into subgenera and the de-
seriptaon of three new species. Entomologist's Monthly Magazine 124: 111-116.
1988e. Four new genera of the Plesiobracon Cameron group (Insecta, Hymenoptera, Braconinae). Zoologica Scripta 17: 411-418.
1988f. A thew genus and species of Adeshini (Hym., Braconidac) from Thailand. Entomologist's Monthly Magazine 124: 203-205.
1989a. The Indo-Australian and E. Palaearetic braconine wasp genus Eurrobracon (Ilymennptera: Braconidue). Jeurnal ol Nalural History 23: 775802.

1989b. Thice new gencral of Bracouim from Australasia and Malaysia (Insectid, Hymenoptera. Bracunidac). Zoologica Scrpta 18: 205-302.
1989c. Firther new host records for genera and species of Braconinte (Hym., Braconidac). Entomologist's Monthly Magazine 125: 199-205
1990. Tergal and inter-tergal metasomad glands of male braconime wasps (Insecta, Hymenoptera, Braconidae), Zoolugicat Scripta 19: 113-423.
Jyola Revisions of Austratian Ipluawlas and Chuoila species (Hym.. Braconidac). Recurds of the Australian Museum 43: 63-84.
19916 Ovjpositor mochanics of the braconine wasp genus Zaglyptogustra and the ichneunmid genus Pristomerus. Journal of Natural History 25: 971-977.
1991c. The non-European Braconmac types of Szépligeti housed in Budapest (Hymenopteru, Braconidae), Annales Historico Naturales Musei Nationalis Hungarici 83: 169-186
1992. Nocturnal Australasian Braconinate (Hym. Braconidac). Entomologist's Monthly Macearanc 128: 33-37.
QUICKE, D.L.J. \& VAN ACHTERBERC, C. I990. Phylogeny of the subtamilies of the fanily Braconidae (Hymenoptera: Jchneumonoidea). Zoologiscle Verhandelingen 258:1-95.
QUICKE. D. L. J., INGRAM, S. N. PROCTOR, J \& HUDDLESTON, T. 1992. Batestan and Mullerian mumicry between specses with connected life historics, with a now example involving braconid wasp parasites of Phoractantio beetes. Joumal of Natural History 26: 10131034.

QUICKE, D.L.J. \& MARSH, F.M. 1992. Two new species of heotropical braconid wasps with highly modified ovipositors (Hymenoptera: Bra-
conndae, Doryctume). Proceedings of the Entomological Society of Washington 94: 559-567.
QUICKE, D.L.J. \& TOBIAS, V.I. 1990. New genera of Braconinac (Hymenoptera, Braconidae) from Australia. Entomolicheskoe Obozrenie 64: 164. 180 [In Russian」.
QUICKE. D.L.J. \& WHARTON, R.A. 1989. Myaroma myanzensis sp.n. (Hymenoptera: Braconidae) parasitic on the stem-torer pest, Chilo partellus Swinhoe (Lepidoptera: Pyralidae) in Kenya. Bulleton of Entomolical Research, London 79: 1-5.
SHENEFELT, R.D. 1978. Part 15, Braconidae, 10. IPp. 1425-1865 Hymenopterormm Catalogus (nov. ed.). (The Haguc: Junk).
S2EPMJGET1, G.V 1905. Exotisehe Braconiden ans den acthiopischen, oricutalischen und australischen Regioneri. Annales Mistorico Naturales Musei Nationalis Hungarici 3: 25-55.
1906. Braconiden aus der Sammiung des ungarischen National Muscums. I. Annales Historico Naturales Musei Nationalis Ilungarici 4: 547. 618.

TURNER, R.E. 1918. Australian Braconidae in the British Museum. Transactions of the Royal Enromological Society of London 1918:91-114.
VAN ACIITERBERG, C. 1979. A revision of the subfamily 7 elinac ance. (Hymenoptera, Braconidae). Tijuschrifi voor Entomologic 122: 241-479.
1983a. Six new genera of Braconinat from the Alrotropical region (Hymenoptera, Braconidate).「ijdschifift voor Entomologie 126: 175-202.
1983b. Three new Palacarctic genera of Braconinate (Hymenoptera: Bracondae). Entonologica Scandinavica 14: 69-76.
1984. Revision ol the genera of Braconini with tirst and second nuetisomal tergites mmovably joined (Hymenoptera, Braconidac). Tijdsthrift voor Entomologic 127: 137-164.
1486. The oviposition behavious ol parasitic Hymenoptera with very long ovipositors (Jchneumonoidca: Braconidae) Entomologische Berichte 46: 113-115.
1988. Revision of the subfamily Blacinae Foerster (Hymenoptera, Braconidac). Zoologisclse Verhandelingen 249: 1-324.
1989. Four new genera of Braconinac and Rogadjnate from the Oriental region (Hymenoptera: Braconidae). Zowlogische Mcdedeclingen (Leiden) 63. 79.95.

[^0]: *Gelasinibracon Quicke (Figs 45, 71, 73, 10)

 Small braconines of the tribe Braconini with
 wing lengths less than 6 mm . Known only from two closely related species: G. sedlaceki Quickc from Papua New Guinea and north Queensland and G. simplicicaudaus Quicke, only known

[^1]: Included Spectes

